Ferbian Milas Siswanto, Maria Dara Novi Handayani, Rita Dewi Firmasyah, Jojor Lamsihar Manalu, Adriyan Pramono
{"title":"缺氧-复氧通过SKN-1和DAF-16A依赖的应激发生作用延长秀丽隐杆线虫的寿命","authors":"Ferbian Milas Siswanto, Maria Dara Novi Handayani, Rita Dewi Firmasyah, Jojor Lamsihar Manalu, Adriyan Pramono","doi":"10.2174/0118746098292667240914024812","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To study the role of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans and elucidate the mechanism at molecular levels.</p><p><strong>Background: </strong>Increasing evidence indicates that reactive oxygen species (ROS) act as signaling molecules that promote health. Hormesis occurs when a moderate stress level induces a beneficial adaptive response, protecting organisms against subsequent exposure to severe stress. Caenorhabditis elegans is a widely used model organism to study aging and displays a broad hormetic ability to couple with stress. To date, only few methods are available to induce stress hormesis in C. elegans.</p><p><strong>Objectives: </strong>The objectives of this study were to explore the effects of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans, exploring the involvement of ROS and oxidative stress-related pathways, and examining the hormetic property of H/R.</p><p><strong>Methods: </strong>The C. elegans were cultured in hypoxic conditions (1% O2) with OP50 bacteria for 24 h followed by reoxygenation (20% O2) (H/R) or in anoxic conditions (0% O2; 100% N2) without OP50 bacteria for 24 h followed by reoxygenation (20% O2) and food supplementation (A/S). Survivals were plotted and estimated for probability with Kaplan-Meier analysis.</p><p><strong>Results: </strong>The H/R extended the lifespan of C. elegans, and H/R-pretreated worms showed improved resistance toward A/S compared to naïve worms. The C. elegans SKN-1 and DAF-16 are important oxidative stress response factors homologous to mammalian Nrf2 and FOXO3, respectively. Mutations in SKN-1 and DAF-16 blocked H/R-induced life extension. Next, H/R treatment in C. elegans activated both SKN-1 and DAF-16, as indicated by the upregulation of putative target genes of SKN-1 (gcs-1 and gss-1) and DAF-16 (sod-3). Moreover, pre-treatment with antioxidants (N-acetylcysteine, chlorogenic acid, and sulforaphane) reduced ROS levels and diminished the lifespan extension effect of H/R, indicating their dependency on ROS.</p><p><strong>Conclusion: </strong>These results provide evidence that H/R is beneficial for lifespan and stress resistance by activating the adaptive cellular response pathway (SKN-1 and DAF-16A) toward oxidative stress.</p>","PeriodicalId":11008,"journal":{"name":"Current aging science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoxia-reoxygenation Extends the Lifespan of Caenorhabditis elegans via SKN-1- and DAF-16A-Dependent Stress Hormesis.\",\"authors\":\"Ferbian Milas Siswanto, Maria Dara Novi Handayani, Rita Dewi Firmasyah, Jojor Lamsihar Manalu, Adriyan Pramono\",\"doi\":\"10.2174/0118746098292667240914024812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To study the role of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans and elucidate the mechanism at molecular levels.</p><p><strong>Background: </strong>Increasing evidence indicates that reactive oxygen species (ROS) act as signaling molecules that promote health. Hormesis occurs when a moderate stress level induces a beneficial adaptive response, protecting organisms against subsequent exposure to severe stress. Caenorhabditis elegans is a widely used model organism to study aging and displays a broad hormetic ability to couple with stress. To date, only few methods are available to induce stress hormesis in C. elegans.</p><p><strong>Objectives: </strong>The objectives of this study were to explore the effects of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans, exploring the involvement of ROS and oxidative stress-related pathways, and examining the hormetic property of H/R.</p><p><strong>Methods: </strong>The C. elegans were cultured in hypoxic conditions (1% O2) with OP50 bacteria for 24 h followed by reoxygenation (20% O2) (H/R) or in anoxic conditions (0% O2; 100% N2) without OP50 bacteria for 24 h followed by reoxygenation (20% O2) and food supplementation (A/S). Survivals were plotted and estimated for probability with Kaplan-Meier analysis.</p><p><strong>Results: </strong>The H/R extended the lifespan of C. elegans, and H/R-pretreated worms showed improved resistance toward A/S compared to naïve worms. The C. elegans SKN-1 and DAF-16 are important oxidative stress response factors homologous to mammalian Nrf2 and FOXO3, respectively. Mutations in SKN-1 and DAF-16 blocked H/R-induced life extension. Next, H/R treatment in C. elegans activated both SKN-1 and DAF-16, as indicated by the upregulation of putative target genes of SKN-1 (gcs-1 and gss-1) and DAF-16 (sod-3). Moreover, pre-treatment with antioxidants (N-acetylcysteine, chlorogenic acid, and sulforaphane) reduced ROS levels and diminished the lifespan extension effect of H/R, indicating their dependency on ROS.</p><p><strong>Conclusion: </strong>These results provide evidence that H/R is beneficial for lifespan and stress resistance by activating the adaptive cellular response pathway (SKN-1 and DAF-16A) toward oxidative stress.</p>\",\"PeriodicalId\":11008,\"journal\":{\"name\":\"Current aging science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current aging science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118746098292667240914024812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current aging science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118746098292667240914024812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Hypoxia-reoxygenation Extends the Lifespan of Caenorhabditis elegans via SKN-1- and DAF-16A-Dependent Stress Hormesis.
Aims: To study the role of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans and elucidate the mechanism at molecular levels.
Background: Increasing evidence indicates that reactive oxygen species (ROS) act as signaling molecules that promote health. Hormesis occurs when a moderate stress level induces a beneficial adaptive response, protecting organisms against subsequent exposure to severe stress. Caenorhabditis elegans is a widely used model organism to study aging and displays a broad hormetic ability to couple with stress. To date, only few methods are available to induce stress hormesis in C. elegans.
Objectives: The objectives of this study were to explore the effects of hypoxia-reoxygenation and anoxia-starvation on the lifespan of C. elegans, exploring the involvement of ROS and oxidative stress-related pathways, and examining the hormetic property of H/R.
Methods: The C. elegans were cultured in hypoxic conditions (1% O2) with OP50 bacteria for 24 h followed by reoxygenation (20% O2) (H/R) or in anoxic conditions (0% O2; 100% N2) without OP50 bacteria for 24 h followed by reoxygenation (20% O2) and food supplementation (A/S). Survivals were plotted and estimated for probability with Kaplan-Meier analysis.
Results: The H/R extended the lifespan of C. elegans, and H/R-pretreated worms showed improved resistance toward A/S compared to naïve worms. The C. elegans SKN-1 and DAF-16 are important oxidative stress response factors homologous to mammalian Nrf2 and FOXO3, respectively. Mutations in SKN-1 and DAF-16 blocked H/R-induced life extension. Next, H/R treatment in C. elegans activated both SKN-1 and DAF-16, as indicated by the upregulation of putative target genes of SKN-1 (gcs-1 and gss-1) and DAF-16 (sod-3). Moreover, pre-treatment with antioxidants (N-acetylcysteine, chlorogenic acid, and sulforaphane) reduced ROS levels and diminished the lifespan extension effect of H/R, indicating their dependency on ROS.
Conclusion: These results provide evidence that H/R is beneficial for lifespan and stress resistance by activating the adaptive cellular response pathway (SKN-1 and DAF-16A) toward oxidative stress.