在 COVID-19 急性期患者、康复者和大流行前人群的血清中检测到的针对 SARS-CoV-2 核头状表位的抗体反应的不同模式。

IF 2.7 4区 医学 Q3 IMMUNOLOGY Pathogens and disease Pub Date : 2024-02-07 DOI:10.1093/femspd/ftae025
Agnieszka Razim, Katarzyna Pacyga-Prus, Wioletta Kazana-Płuszka, Agnieszka Zabłocka, Józefa Macała, Hubert Ciepłucha, Andrzej Gamian, Sabina Górska
{"title":"在 COVID-19 急性期患者、康复者和大流行前人群的血清中检测到的针对 SARS-CoV-2 核头状表位的抗体反应的不同模式。","authors":"Agnieszka Razim, Katarzyna Pacyga-Prus, Wioletta Kazana-Płuszka, Agnieszka Zabłocka, Józefa Macała, Hubert Ciepłucha, Andrzej Gamian, Sabina Górska","doi":"10.1093/femspd/ftae025","DOIUrl":null,"url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is pre-pandemic immunity; however, its source is unknown. The analysis of patients' humoral responses might shed light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plants or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infections with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in the acute phase of infection and convalescents making them suitable for future development of vaccines against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in the acute phase of COVID-19, convalescents, and pre-pandemic individuals.\",\"authors\":\"Agnieszka Razim, Katarzyna Pacyga-Prus, Wioletta Kazana-Płuszka, Agnieszka Zabłocka, Józefa Macała, Hubert Ciepłucha, Andrzej Gamian, Sabina Górska\",\"doi\":\"10.1093/femspd/ftae025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is pre-pandemic immunity; however, its source is unknown. The analysis of patients' humoral responses might shed light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plants or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infections with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in the acute phase of infection and convalescents making them suitable for future development of vaccines against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.</p>\",\"PeriodicalId\":19795,\"journal\":{\"name\":\"Pathogens and disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/femspd/ftae025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftae025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)已在全球范围内感染了 7 亿多人,造成 700 多万人死亡。与此同时,我们对这种病毒的认识仍处于起步阶段。在某些病例中,存在大流行前免疫,但其来源不明。对患者体液反应的分析可能会揭示这一谜团。本文评估了 SARS-CoV-2 结构蛋白之一的核壳蛋白的抗体识别能力。为此,我们使用了大流行前、急性 COVID-19 和康复期患者的血清来鉴定和绘制核壳蛋白表位图。我们发现了一个共同的表位 KKSAAEASKPRQKRTATKA,该表位被所有三组患者的血清抗体所识别。该序列的一些基序在各种冠状病毒、植物或人类蛋白质中广泛存在,这表明核壳蛋白反应性抗体的来源可能比以往感染季节性冠状病毒的来源更多。MSDNGPQNQRNAPRITFGGP 和 KADETQALPQRQKKQQTVTL 这两个序列被检测出对急性感染期患者和康复者的血清具有特异性,因此适合用于未来开发 SARS-CoV-2 疫苗。了解 SARS-CoV-2 感染的体液反应对设计适当的诊断工具和疫苗抗原至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in the acute phase of COVID-19, convalescents, and pre-pandemic individuals.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is pre-pandemic immunity; however, its source is unknown. The analysis of patients' humoral responses might shed light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plants or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infections with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in the acute phase of infection and convalescents making them suitable for future development of vaccines against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
期刊最新文献
Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation. Protective Anti-Chlamydial Vaccine Regimen-Induced CD4+ T cell Response Mediates Early Inhibition of Pathogenic CD8+ T cell Response Following Genital Challenge From Fever to Action: Diagnosis, Treatment, and Prevention of Acute Undifferentiated Febrile Illnesses A review on Zika vaccine development. In vitro effects of selective serotonin reuptake inhibitors on Cryptococcus gattii capsule and biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1