Maria M M Kaisar, Helen Kristin, Fajar A Wijaya, Clarissa Rachel, Felicia Anggraini, Soegianto Ali
{"title":"使用市售试剂盒优化和应用数字液滴 PCR 检测唾液样本中的 SARS-CoV-2","authors":"Maria M M Kaisar, Helen Kristin, Fajar A Wijaya, Clarissa Rachel, Felicia Anggraini, Soegianto Ali","doi":"10.1093/biomethods/bpae068","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immunocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6°C. Although a 25% higher primer/probe concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An inverse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher the concentration, for the N and E genes with r<sup>2</sup> values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r<sup>2</sup> of 0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens using saliva specimens.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization and application of digital droplet PCR for the detection of SARS-CoV-2 in saliva specimen using commercially available kit.\",\"authors\":\"Maria M M Kaisar, Helen Kristin, Fajar A Wijaya, Clarissa Rachel, Felicia Anggraini, Soegianto Ali\",\"doi\":\"10.1093/biomethods/bpae068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immunocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6°C. Although a 25% higher primer/probe concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An inverse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher the concentration, for the N and E genes with r<sup>2</sup> values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r<sup>2</sup> of 0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens using saliva specimens.</p>\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpae068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimization and application of digital droplet PCR for the detection of SARS-CoV-2 in saliva specimen using commercially available kit.
The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immunocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6°C. Although a 25% higher primer/probe concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An inverse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher the concentration, for the N and E genes with r2 values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r2 of 0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens using saliva specimens.