{"title":"通过短期海外学习项目将跨文化能力融入神经科学课程。","authors":"Greta Ann Herin, Gwendolyn M Lewis","doi":"10.59390/PVEC2816","DOIUrl":null,"url":null,"abstract":"<p><p>We sought to enrich our neuroscience curriculum by developing a study abroad program that would address curricular goals and requirements at several levels. \"Neuroscience and Technology in Germany\" was designed to include a diversity of participants, integrate intercultural competence in participants, fulfill university core curriculum requirements, build on the Science, Technology, Engineering, and Math (STEM) foundation of our major, and fulfill major electives. We also hoped that it would serve as a synthetic experience allowing students to integrate foundational coursework with novel ideas and real-world research applications. We developed an itinerary that balanced multiple activities to meet those goals. We included scientific visits, STEM-focused museums, and significant cultural and historical sites. Scientific visits covered a range of topics in the field of neuroscience including cellular and pharmacological neuroscience, development, cognition, mental illness, artificial intelligence, and the mind-body problem. Pre-visit academic activities included review lectures on general topics (e.g., visual system), scaffolded literature reading, and discussion of previous literature from our hosts. Post-visit academic activities integrated previous foundational curriculum with new research. Cultural historical activities encouraged comparison between a student's home culture, predominant North American culture, and German culture. The first iteration was successful academically and logistically. In post-program surveys, 87.5% of students felt the program had met the learning objectives <i>(n=</i>16). Students agreed that scientific visits and preparatory lectures were relevant to the learning objectives, together with several cultural and historical visits. Students responded positively to an outing to the mountains and found a concentration camp memorial visit moving. They nearly universally reported that the program led to their personal growth. Students did not find several guided tours of STEM-related sites were relevant to our learning objectives, and opinions were mixed as to the balance of structured vs. unstructured time, balance of scientific vs. historical/cultural activities, and how to schedule free time. Students asked for more scientific background preparation, so we modified the upcoming iteration to include a \"Neuroscience Boot Camp\" prior to departure. We also selected guided tours more carefully and modified scheduling according to student feedback.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"22 3","pages":"A167-A176"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating Intercultural Competence into a Neuroscience Curriculum through a Short-Term Study Abroad Program.\",\"authors\":\"Greta Ann Herin, Gwendolyn M Lewis\",\"doi\":\"10.59390/PVEC2816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We sought to enrich our neuroscience curriculum by developing a study abroad program that would address curricular goals and requirements at several levels. \\\"Neuroscience and Technology in Germany\\\" was designed to include a diversity of participants, integrate intercultural competence in participants, fulfill university core curriculum requirements, build on the Science, Technology, Engineering, and Math (STEM) foundation of our major, and fulfill major electives. We also hoped that it would serve as a synthetic experience allowing students to integrate foundational coursework with novel ideas and real-world research applications. We developed an itinerary that balanced multiple activities to meet those goals. We included scientific visits, STEM-focused museums, and significant cultural and historical sites. Scientific visits covered a range of topics in the field of neuroscience including cellular and pharmacological neuroscience, development, cognition, mental illness, artificial intelligence, and the mind-body problem. Pre-visit academic activities included review lectures on general topics (e.g., visual system), scaffolded literature reading, and discussion of previous literature from our hosts. Post-visit academic activities integrated previous foundational curriculum with new research. Cultural historical activities encouraged comparison between a student's home culture, predominant North American culture, and German culture. The first iteration was successful academically and logistically. In post-program surveys, 87.5% of students felt the program had met the learning objectives <i>(n=</i>16). Students agreed that scientific visits and preparatory lectures were relevant to the learning objectives, together with several cultural and historical visits. Students responded positively to an outing to the mountains and found a concentration camp memorial visit moving. They nearly universally reported that the program led to their personal growth. Students did not find several guided tours of STEM-related sites were relevant to our learning objectives, and opinions were mixed as to the balance of structured vs. unstructured time, balance of scientific vs. historical/cultural activities, and how to schedule free time. Students asked for more scientific background preparation, so we modified the upcoming iteration to include a \\\"Neuroscience Boot Camp\\\" prior to departure. We also selected guided tours more carefully and modified scheduling according to student feedback.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"22 3\",\"pages\":\"A167-A176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/PVEC2816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/PVEC2816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Intercultural Competence into a Neuroscience Curriculum through a Short-Term Study Abroad Program.
We sought to enrich our neuroscience curriculum by developing a study abroad program that would address curricular goals and requirements at several levels. "Neuroscience and Technology in Germany" was designed to include a diversity of participants, integrate intercultural competence in participants, fulfill university core curriculum requirements, build on the Science, Technology, Engineering, and Math (STEM) foundation of our major, and fulfill major electives. We also hoped that it would serve as a synthetic experience allowing students to integrate foundational coursework with novel ideas and real-world research applications. We developed an itinerary that balanced multiple activities to meet those goals. We included scientific visits, STEM-focused museums, and significant cultural and historical sites. Scientific visits covered a range of topics in the field of neuroscience including cellular and pharmacological neuroscience, development, cognition, mental illness, artificial intelligence, and the mind-body problem. Pre-visit academic activities included review lectures on general topics (e.g., visual system), scaffolded literature reading, and discussion of previous literature from our hosts. Post-visit academic activities integrated previous foundational curriculum with new research. Cultural historical activities encouraged comparison between a student's home culture, predominant North American culture, and German culture. The first iteration was successful academically and logistically. In post-program surveys, 87.5% of students felt the program had met the learning objectives (n=16). Students agreed that scientific visits and preparatory lectures were relevant to the learning objectives, together with several cultural and historical visits. Students responded positively to an outing to the mountains and found a concentration camp memorial visit moving. They nearly universally reported that the program led to their personal growth. Students did not find several guided tours of STEM-related sites were relevant to our learning objectives, and opinions were mixed as to the balance of structured vs. unstructured time, balance of scientific vs. historical/cultural activities, and how to schedule free time. Students asked for more scientific background preparation, so we modified the upcoming iteration to include a "Neuroscience Boot Camp" prior to departure. We also selected guided tours more carefully and modified scheduling according to student feedback.