了解屏蔽触发式自动注射器与皮肤之间的相互作用力:一项深入的无创研究。

Anne-Sofie Madsen Staples, Hanaa Abuo-Chalih, Dan Nørtoft Sørensen
{"title":"了解屏蔽触发式自动注射器与皮肤之间的相互作用力:一项深入的无创研究。","authors":"Anne-Sofie Madsen Staples, Hanaa Abuo-Chalih, Dan Nørtoft Sørensen","doi":"10.1080/17425247.2024.2411435","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This noninvasive study aimed to understand the interaction between shield-triggered autoinjectors (AI) and skin at the point of activation, hypothesizing that the AI's housing absorbs a significant amount of the user-applied force depending on shield design and skin characteristics.</p><p><strong>Methods: </strong>Twenty-seven volunteers used a test device measuring applied force versus shield force and indentation depth relative to shield length (2,4,6,8 mm) in standing and sitting positions.</p><p><strong>Results: </strong>Significant differences were found between applied and shield force for the different shield lengths. Shorter shields resulted in significantly lower force transfer coefficients, with means ranging from 0.72 for the 2 mm shield to 0.94 for the 8 mm shield. ANOVA revealed statistically significant factors (<i>p</i> < .05), including position and gender, with females generally having lower coefficient values. Indentation depth increased with higher forces and varied significantly between positions without significant shield length impact.</p><p><strong>Conclusion: </strong>The findings confirm that an increase in shield length at the point of activation reduces skin friction with the housing, resulting in less force loss and a lower device activation force perceived by the user. Force loss can be further reduced by standing up. Understanding device-tissue interactions will support development of better AIs with fewer user failures.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the interaction forces between shield-triggered autoinjectors and skin: an in-depth noninvasive study.\",\"authors\":\"Anne-Sofie Madsen Staples, Hanaa Abuo-Chalih, Dan Nørtoft Sørensen\",\"doi\":\"10.1080/17425247.2024.2411435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This noninvasive study aimed to understand the interaction between shield-triggered autoinjectors (AI) and skin at the point of activation, hypothesizing that the AI's housing absorbs a significant amount of the user-applied force depending on shield design and skin characteristics.</p><p><strong>Methods: </strong>Twenty-seven volunteers used a test device measuring applied force versus shield force and indentation depth relative to shield length (2,4,6,8 mm) in standing and sitting positions.</p><p><strong>Results: </strong>Significant differences were found between applied and shield force for the different shield lengths. Shorter shields resulted in significantly lower force transfer coefficients, with means ranging from 0.72 for the 2 mm shield to 0.94 for the 8 mm shield. ANOVA revealed statistically significant factors (<i>p</i> < .05), including position and gender, with females generally having lower coefficient values. Indentation depth increased with higher forces and varied significantly between positions without significant shield length impact.</p><p><strong>Conclusion: </strong>The findings confirm that an increase in shield length at the point of activation reduces skin friction with the housing, resulting in less force loss and a lower device activation force perceived by the user. Force loss can be further reduced by standing up. Understanding device-tissue interactions will support development of better AIs with fewer user failures.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2024.2411435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2411435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的这项无创研究旨在了解屏蔽触发式自动注射器(AI)与皮肤在激活点的相互作用,假设根据屏蔽设计和皮肤特征,AI 的外壳会吸收大量用户施加的力:方法:27 名志愿者使用测试设备,测量站姿和坐姿下的外力与屏蔽力以及相对于屏蔽长度(2、4、6、8 毫米)的压痕深度:结果:不同长度的防护罩在作用力和防护力之间存在显著差异。较短的护板导致力传递系数明显较低,平均值从 2 毫米护板的 0.72 到 8 毫米护板的 0.94 不等。方差分析揭示了具有统计学意义的因素(p 结论):研究结果证实,在启动点增加护罩长度可减少皮肤与外壳的摩擦,从而减少力损失,降低用户感知到的设备启动力。站立可进一步减少力损失。了解设备与组织之间的相互作用将有助于开发更好的人工智能,减少用户失误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the interaction forces between shield-triggered autoinjectors and skin: an in-depth noninvasive study.

Objective: This noninvasive study aimed to understand the interaction between shield-triggered autoinjectors (AI) and skin at the point of activation, hypothesizing that the AI's housing absorbs a significant amount of the user-applied force depending on shield design and skin characteristics.

Methods: Twenty-seven volunteers used a test device measuring applied force versus shield force and indentation depth relative to shield length (2,4,6,8 mm) in standing and sitting positions.

Results: Significant differences were found between applied and shield force for the different shield lengths. Shorter shields resulted in significantly lower force transfer coefficients, with means ranging from 0.72 for the 2 mm shield to 0.94 for the 8 mm shield. ANOVA revealed statistically significant factors (p < .05), including position and gender, with females generally having lower coefficient values. Indentation depth increased with higher forces and varied significantly between positions without significant shield length impact.

Conclusion: The findings confirm that an increase in shield length at the point of activation reduces skin friction with the housing, resulting in less force loss and a lower device activation force perceived by the user. Force loss can be further reduced by standing up. Understanding device-tissue interactions will support development of better AIs with fewer user failures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How can pressurized gyration revolutionize drug delivery? Microfabrication of controlled release osmotic drug delivery systems assembled from designed elements. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part I - composition and production methods. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1