Andrei Rasputnyi, Zhaopin Chen, Michael Birk, Oren Cohen, Ido Kaminer, Michael Krüger, Denis Seletskiy, Maria Chekhova, Francesco Tani
{"title":"明亮挤压真空产生的高次谐波","authors":"Andrei Rasputnyi, Zhaopin Chen, Michael Birk, Oren Cohen, Ido Kaminer, Michael Krüger, Denis Seletskiy, Maria Chekhova, Francesco Tani","doi":"10.1038/s41567-024-02659-x","DOIUrl":null,"url":null,"abstract":"High-harmonic generation has been driving the development of attosecond science and sources. More recently, high-harmonic generation in solids has been adopted by other communities as a method to study material properties. However, so far high-harmonic generation has only been driven by classical light, despite theoretical proposals to do so with quantum states of light. Here we observe non-perturbative high-harmonic generation in solids driven by a macroscopic quantum state of light, a bright squeezed vacuum, which we generate in a single spatiotemporal mode. The process driven by a bright squeezed vacuum is considerably more efficient in the generation of high harmonics than classical light of the same mean intensity. Due to its broad photon-number distribution, covering states from 0 to 2 × 1013 photons per pulse, and strong subcycle electric field fluctuations, a bright squeezed vacuum gives access to free carrier dynamics within a much broader range of peak intensities than accessible with classical light. High-harmonic generation has so far been driven only by classical light. Now, its driving by a bright squeezed vacuum—a quantum state of light—has been observed and shown to be more efficient than using classical light.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1960-1965"},"PeriodicalIF":17.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02659-x.pdf","citationCount":"0","resultStr":"{\"title\":\"High-harmonic generation by a bright squeezed vacuum\",\"authors\":\"Andrei Rasputnyi, Zhaopin Chen, Michael Birk, Oren Cohen, Ido Kaminer, Michael Krüger, Denis Seletskiy, Maria Chekhova, Francesco Tani\",\"doi\":\"10.1038/s41567-024-02659-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-harmonic generation has been driving the development of attosecond science and sources. More recently, high-harmonic generation in solids has been adopted by other communities as a method to study material properties. However, so far high-harmonic generation has only been driven by classical light, despite theoretical proposals to do so with quantum states of light. Here we observe non-perturbative high-harmonic generation in solids driven by a macroscopic quantum state of light, a bright squeezed vacuum, which we generate in a single spatiotemporal mode. The process driven by a bright squeezed vacuum is considerably more efficient in the generation of high harmonics than classical light of the same mean intensity. Due to its broad photon-number distribution, covering states from 0 to 2 × 1013 photons per pulse, and strong subcycle electric field fluctuations, a bright squeezed vacuum gives access to free carrier dynamics within a much broader range of peak intensities than accessible with classical light. High-harmonic generation has so far been driven only by classical light. Now, its driving by a bright squeezed vacuum—a quantum state of light—has been observed and shown to be more efficient than using classical light.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 12\",\"pages\":\"1960-1965\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-024-02659-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02659-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02659-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
High-harmonic generation by a bright squeezed vacuum
High-harmonic generation has been driving the development of attosecond science and sources. More recently, high-harmonic generation in solids has been adopted by other communities as a method to study material properties. However, so far high-harmonic generation has only been driven by classical light, despite theoretical proposals to do so with quantum states of light. Here we observe non-perturbative high-harmonic generation in solids driven by a macroscopic quantum state of light, a bright squeezed vacuum, which we generate in a single spatiotemporal mode. The process driven by a bright squeezed vacuum is considerably more efficient in the generation of high harmonics than classical light of the same mean intensity. Due to its broad photon-number distribution, covering states from 0 to 2 × 1013 photons per pulse, and strong subcycle electric field fluctuations, a bright squeezed vacuum gives access to free carrier dynamics within a much broader range of peak intensities than accessible with classical light. High-harmonic generation has so far been driven only by classical light. Now, its driving by a bright squeezed vacuum—a quantum state of light—has been observed and shown to be more efficient than using classical light.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.