{"title":"动态水门促进了微纳米水膜的形成,从而实现太阳能驱动的快速蒸发","authors":"Zhen Yu , Ting Xiong , Yaoxin Zhang","doi":"10.1016/j.matt.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial solar evaporators have attracted increasing attention recently. Traditional photothermal absorbers typically rely on capillary wicking for continuous water supply, often resulting in water filling the entire porous structure and thus causing unnecessary parasitic heat loss. The formation of the micro-nano water films in the evaporation materials enabled rapid solar-driven water evaporation owing to the reduced evaporation entropy, larger evaporation area, and minimized heat loss.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3250-3252"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic water gating facilitated the formation of micro-nano water films for rapid solar-driven evaporation\",\"authors\":\"Zhen Yu , Ting Xiong , Yaoxin Zhang\",\"doi\":\"10.1016/j.matt.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interfacial solar evaporators have attracted increasing attention recently. Traditional photothermal absorbers typically rely on capillary wicking for continuous water supply, often resulting in water filling the entire porous structure and thus causing unnecessary parasitic heat loss. The formation of the micro-nano water films in the evaporation materials enabled rapid solar-driven water evaporation owing to the reduced evaporation entropy, larger evaporation area, and minimized heat loss.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 10\",\"pages\":\"Pages 3250-3252\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524004363\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004363","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic water gating facilitated the formation of micro-nano water films for rapid solar-driven evaporation
Interfacial solar evaporators have attracted increasing attention recently. Traditional photothermal absorbers typically rely on capillary wicking for continuous water supply, often resulting in water filling the entire porous structure and thus causing unnecessary parasitic heat loss. The formation of the micro-nano water films in the evaporation materials enabled rapid solar-driven water evaporation owing to the reduced evaporation entropy, larger evaporation area, and minimized heat loss.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.