激光诱导水等离子体促进直接制氢。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-10-03 DOI:10.1021/acs.nanolett.4c02996
Qunfang Gu, Yimin Zhang, Daqiang Chen, Luhao Zhang, Jiyu Xu, Cui Zhang, Sheng Meng, Enge Wang
{"title":"激光诱导水等离子体促进直接制氢。","authors":"Qunfang Gu, Yimin Zhang, Daqiang Chen, Luhao Zhang, Jiyu Xu, Cui Zhang, Sheng Meng, Enge Wang","doi":"10.1021/acs.nanolett.4c02996","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen, as a clean energy carrier, plays an important role in addressing the current energy and environmental crisis. However, conventional hydrogen production technologies require extreme reaction conditions, such as high temperature, high pressure, and catalysts. Herein, we study the microscopic mechanism of laser-induced water plasma and subsequent H<sub>2</sub> production with real-time time-dependent density functional theory simulations and <i>ab initio</i> molecular dynamics simulations. The results demonstrate that intense laser excites liquid water to generate nonequilibrium plasma in a warm-dense state, which constitutes a superior reaction environment. Subsequent annealing leads to the recombination of energetic reactive particles to generate H<sub>2</sub>, O<sub>2</sub>, and H<sub>2</sub>O<sub>2</sub> molecules. Annealing rate and laser wavelength are shown to modulate the product ratio, and the energy conversion efficiency can reach ∼9.2% with an annealing rate of 1.0 K/fs. This work reveals the nonequilibrium atomistic mechanisms of hydrogen production from laser-induced water plasma and shows far-reaching implications for the design of optically controllable hydrogen technology.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Hydrogen Production Promoted by Laser-Induced Water Plasma.\",\"authors\":\"Qunfang Gu, Yimin Zhang, Daqiang Chen, Luhao Zhang, Jiyu Xu, Cui Zhang, Sheng Meng, Enge Wang\",\"doi\":\"10.1021/acs.nanolett.4c02996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen, as a clean energy carrier, plays an important role in addressing the current energy and environmental crisis. However, conventional hydrogen production technologies require extreme reaction conditions, such as high temperature, high pressure, and catalysts. Herein, we study the microscopic mechanism of laser-induced water plasma and subsequent H<sub>2</sub> production with real-time time-dependent density functional theory simulations and <i>ab initio</i> molecular dynamics simulations. The results demonstrate that intense laser excites liquid water to generate nonequilibrium plasma in a warm-dense state, which constitutes a superior reaction environment. Subsequent annealing leads to the recombination of energetic reactive particles to generate H<sub>2</sub>, O<sub>2</sub>, and H<sub>2</sub>O<sub>2</sub> molecules. Annealing rate and laser wavelength are shown to modulate the product ratio, and the energy conversion efficiency can reach ∼9.2% with an annealing rate of 1.0 K/fs. This work reveals the nonequilibrium atomistic mechanisms of hydrogen production from laser-induced water plasma and shows far-reaching implications for the design of optically controllable hydrogen technology.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02996\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02996","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氢作为一种清洁能源载体,在应对当前的能源和环境危机方面发挥着重要作用。然而,传统的制氢技术需要高温、高压和催化剂等极端反应条件。在此,我们通过实时时变密度泛函理论模拟和原子分子动力学模拟,研究了激光诱导水等离子体及随后产生氢气的微观机理。结果表明,强激光激发液态水在温密状态下产生非平衡等离子体,构成了一个优越的反应环境。随后的退火导致高能反应粒子重组,生成 H2、O2 和 H2O2 分子。退火速率和激光波长可调节产物比率,退火速率为 1.0 K/fs 时,能量转换效率可达 9.2%。这项研究揭示了激光诱导水等离子体制氢的非平衡原子机制,对设计光学可控制氢技术具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Hydrogen Production Promoted by Laser-Induced Water Plasma.

Hydrogen, as a clean energy carrier, plays an important role in addressing the current energy and environmental crisis. However, conventional hydrogen production technologies require extreme reaction conditions, such as high temperature, high pressure, and catalysts. Herein, we study the microscopic mechanism of laser-induced water plasma and subsequent H2 production with real-time time-dependent density functional theory simulations and ab initio molecular dynamics simulations. The results demonstrate that intense laser excites liquid water to generate nonequilibrium plasma in a warm-dense state, which constitutes a superior reaction environment. Subsequent annealing leads to the recombination of energetic reactive particles to generate H2, O2, and H2O2 molecules. Annealing rate and laser wavelength are shown to modulate the product ratio, and the energy conversion efficiency can reach ∼9.2% with an annealing rate of 1.0 K/fs. This work reveals the nonequilibrium atomistic mechanisms of hydrogen production from laser-induced water plasma and shows far-reaching implications for the design of optically controllable hydrogen technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. Direct Hydrogen Production Promoted by Laser-Induced Water Plasma. Preferred Lung Accumulation of Polystyrene Nanoplastics with Negative Charges. Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate. Constructing the Fulde–Ferrell–Larkin–Ovchinnikov State in a CrOCl/NbSe2 van der Waals Heterostructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1