{"title":"重组乳酸同化蓝藻可降低哺乳动物细胞中与高浓度培养相关的细胞毒性。","authors":"Yuji Haraguchi, Yuichi Kato, Ayaka Tsuji, Tomohisa Hasunuma, Tatsuya Shimizu","doi":"10.1007/s00203-024-04149-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the fields of cultured meat, biopharmaceuticals, cell therapy, and tissue engineering, large numbers of mammalian cells are required; thus, highly-concentrated cell cultures are widely adopted. In general, such cultures can lead to cell damage caused by waste product accumulation and nutritional inadequacy. In this study, a novel co-culture system where the recombinant lactate-assimilating cyanobacterial strain, KC0110, derived from euryhaline <i>Picosynechococcus</i> sp. PCC 7002, and mammalian muscle cells cultured across porous membranes been developed. By using the KC0110 strain, the amount of ammonium and lactate excreted from C2C12 mouse muscle cells into the culture significantly decreased. Importantly, pyruvate and some amino acids, including pyruvate-derived amino acids, also increased significantly compared to those in monoculture of C2C12 cells. It is believed that the organic acids secreted by the KC0110 strain enhance the growth of mammalian cells, leading to a reduction in high-concentration culture-induced mammalian cell damage [lactate dehydrogenase (LDH) release] through cyanobacterial co-culture. These results show that, through co-cultivation with cyanobacteria, it is possible to culture mammalian cells, alleviating cell damage, even in highly-concentrated cultures. This study demonstrated an in vitro \"symbiotic circular system\" that can interchange metabolites produced by phototrophs and mammalian cells.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant lactate-assimilating cyanobacteria reduce high-concentration culture-associated cytotoxicity in mammalian cells\",\"authors\":\"Yuji Haraguchi, Yuichi Kato, Ayaka Tsuji, Tomohisa Hasunuma, Tatsuya Shimizu\",\"doi\":\"10.1007/s00203-024-04149-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the fields of cultured meat, biopharmaceuticals, cell therapy, and tissue engineering, large numbers of mammalian cells are required; thus, highly-concentrated cell cultures are widely adopted. In general, such cultures can lead to cell damage caused by waste product accumulation and nutritional inadequacy. In this study, a novel co-culture system where the recombinant lactate-assimilating cyanobacterial strain, KC0110, derived from euryhaline <i>Picosynechococcus</i> sp. PCC 7002, and mammalian muscle cells cultured across porous membranes been developed. By using the KC0110 strain, the amount of ammonium and lactate excreted from C2C12 mouse muscle cells into the culture significantly decreased. Importantly, pyruvate and some amino acids, including pyruvate-derived amino acids, also increased significantly compared to those in monoculture of C2C12 cells. It is believed that the organic acids secreted by the KC0110 strain enhance the growth of mammalian cells, leading to a reduction in high-concentration culture-induced mammalian cell damage [lactate dehydrogenase (LDH) release] through cyanobacterial co-culture. These results show that, through co-cultivation with cyanobacteria, it is possible to culture mammalian cells, alleviating cell damage, even in highly-concentrated cultures. This study demonstrated an in vitro \\\"symbiotic circular system\\\" that can interchange metabolites produced by phototrophs and mammalian cells.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04149-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04149-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recombinant lactate-assimilating cyanobacteria reduce high-concentration culture-associated cytotoxicity in mammalian cells
In the fields of cultured meat, biopharmaceuticals, cell therapy, and tissue engineering, large numbers of mammalian cells are required; thus, highly-concentrated cell cultures are widely adopted. In general, such cultures can lead to cell damage caused by waste product accumulation and nutritional inadequacy. In this study, a novel co-culture system where the recombinant lactate-assimilating cyanobacterial strain, KC0110, derived from euryhaline Picosynechococcus sp. PCC 7002, and mammalian muscle cells cultured across porous membranes been developed. By using the KC0110 strain, the amount of ammonium and lactate excreted from C2C12 mouse muscle cells into the culture significantly decreased. Importantly, pyruvate and some amino acids, including pyruvate-derived amino acids, also increased significantly compared to those in monoculture of C2C12 cells. It is believed that the organic acids secreted by the KC0110 strain enhance the growth of mammalian cells, leading to a reduction in high-concentration culture-induced mammalian cell damage [lactate dehydrogenase (LDH) release] through cyanobacterial co-culture. These results show that, through co-cultivation with cyanobacteria, it is possible to culture mammalian cells, alleviating cell damage, even in highly-concentrated cultures. This study demonstrated an in vitro "symbiotic circular system" that can interchange metabolites produced by phototrophs and mammalian cells.