Suzan F Ghannam, Catrin Sian Rutland, Cinzia Allegrucci, Melissa L Mather, Mansour Alsaleem, Thomas D Bateman-Price, Rodhan Patke, Graham Ball, Nigel P Mongan, Emad Rakha
{"title":"利用微分干涉对比显微镜观察乳腺癌基质胶原纤维的几何特征。","authors":"Suzan F Ghannam, Catrin Sian Rutland, Cinzia Allegrucci, Melissa L Mather, Mansour Alsaleem, Thomas D Bateman-Price, Rodhan Patke, Graham Ball, Nigel P Mongan, Emad Rakha","doi":"10.1111/jmi.13361","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm<sup>2</sup>) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy.\",\"authors\":\"Suzan F Ghannam, Catrin Sian Rutland, Cinzia Allegrucci, Melissa L Mather, Mansour Alsaleem, Thomas D Bateman-Price, Rodhan Patke, Graham Ball, Nigel P Mongan, Emad Rakha\",\"doi\":\"10.1111/jmi.13361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm<sup>2</sup>) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13361\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
乳腺癌(BC)具有高度异质性的特点,这受到肿瘤细胞与肿瘤微环境相互作用的影响。肿瘤基质对乳腺癌的诊断和预后作用仍有待明确。微分干涉对比(DIC)显微镜是一种无标记成像技术,非常适合观察细胞和组织等弱光相物体。本研究旨在利用 DIC 显微镜比较原位乳腺肿瘤和浸润性乳腺肿瘤的基质胶原纤维特征,并研究胶原蛋白参数在 BC 中的预后价值。从 200 个病例中生成了组织微阵列,包括乳腺导管原位癌(DCIS;n = 100)和浸润性肿瘤(n = 100),并利用额外的 50 个病例(25 个浸润性 BC 和 25 个 DCIS)进行验证。每个病例使用两张切片:一张经血黄素和伊红(H&E)染色,用于组织学检查;另一张未经染色,用于 DIC 显微镜检查。测量了胶原纤维参数,包括取向角、纤维排列、纤维密度、纤维宽度、纤维长度和纤维直线度。与 DCIS 相比,浸润性 BC 基质中的胶原纤维密度更高(161.68 ± 11.2 纤维/µm2)(p<0.05)。
Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy.
Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm2) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.