利用深度模型进行可靠的水下多目标到达方向最优估计。

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-10-01 DOI:10.1121/10.0030398
Zehui Yang, Weihang Nie, Lingxuan Ye, Gaofeng Cheng, Yonghong Yan
{"title":"利用深度模型进行可靠的水下多目标到达方向最优估计。","authors":"Zehui Yang, Weihang Nie, Lingxuan Ye, Gaofeng Cheng, Yonghong Yan","doi":"10.1121/10.0030398","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-target direction of arrival (DoA) estimation is an important and challenging task for sonar signal processing. In this study, we propose a method called learning direction of arrival with optimal transport (LOT) to accurately estimate the DoAs of multiple sources with a single deep model. We model the DoA estimation problem as a multi-label classification task and introduce an optimal transport (OT) loss based on the OT theory to capture the intrinsic continuity within the angular categories. We design a cost matrix for the OT loss in LOT approach to characterize the order and periodicity of the angular grid. The LOT approach encourages reliable predictions closer to the ground truth and suppresses spurious targets. We also propose a lightweight channel mask data augmentation module for deep models that use items related to the covariance matrix as input. The proposed methods can be seamlessly integrated with different model architectures and we indicate the portability with experiments on several typical network backbones. Experiments across various scenarios using different measurements show the effectiveness and robustness of our approaches. Results on SwellEx-96 experimental data demonstrate the practicality in real applications.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable underwater multi-target direction of arrival estimation with optimal transport using deep models.\",\"authors\":\"Zehui Yang, Weihang Nie, Lingxuan Ye, Gaofeng Cheng, Yonghong Yan\",\"doi\":\"10.1121/10.0030398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-target direction of arrival (DoA) estimation is an important and challenging task for sonar signal processing. In this study, we propose a method called learning direction of arrival with optimal transport (LOT) to accurately estimate the DoAs of multiple sources with a single deep model. We model the DoA estimation problem as a multi-label classification task and introduce an optimal transport (OT) loss based on the OT theory to capture the intrinsic continuity within the angular categories. We design a cost matrix for the OT loss in LOT approach to characterize the order and periodicity of the angular grid. The LOT approach encourages reliable predictions closer to the ground truth and suppresses spurious targets. We also propose a lightweight channel mask data augmentation module for deep models that use items related to the covariance matrix as input. The proposed methods can be seamlessly integrated with different model architectures and we indicate the portability with experiments on several typical network backbones. Experiments across various scenarios using different measurements show the effectiveness and robustness of our approaches. Results on SwellEx-96 experimental data demonstrate the practicality in real applications.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0030398\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0030398","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

多目标到达方向(DoA)估计是声纳信号处理中一项重要而具有挑战性的任务。在本研究中,我们提出了一种名为 "用最优传输学习到达方向(LOT)"的方法,以便用单一深度模型准确估计多个来源的 DoA。我们将到达方向估计问题建模为多标签分类任务,并基于最优传输理论引入最优传输(OT)损失,以捕捉角度类别内的内在连续性。我们为 LOT 方法中的 OT 损失设计了一个成本矩阵,以描述角度网格的顺序和周期性。LOT 方法鼓励更接近地面实况的可靠预测,并抑制虚假目标。我们还为使用协方差矩阵相关项目作为输入的深度模型提出了一种轻量级信道掩码数据增强模块。所提出的方法可以与不同的模型架构无缝集成,我们在几个典型的网络主干上进行了实验,证明了这些方法的可移植性。使用不同测量方法在各种场景下进行的实验表明了我们方法的有效性和稳健性。SwellEx-96 实验数据的结果表明了该方法在实际应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliable underwater multi-target direction of arrival estimation with optimal transport using deep models.

Multi-target direction of arrival (DoA) estimation is an important and challenging task for sonar signal processing. In this study, we propose a method called learning direction of arrival with optimal transport (LOT) to accurately estimate the DoAs of multiple sources with a single deep model. We model the DoA estimation problem as a multi-label classification task and introduce an optimal transport (OT) loss based on the OT theory to capture the intrinsic continuity within the angular categories. We design a cost matrix for the OT loss in LOT approach to characterize the order and periodicity of the angular grid. The LOT approach encourages reliable predictions closer to the ground truth and suppresses spurious targets. We also propose a lightweight channel mask data augmentation module for deep models that use items related to the covariance matrix as input. The proposed methods can be seamlessly integrated with different model architectures and we indicate the portability with experiments on several typical network backbones. Experiments across various scenarios using different measurements show the effectiveness and robustness of our approaches. Results on SwellEx-96 experimental data demonstrate the practicality in real applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
Influence of variable sound-absorbing devices on room acoustical parameters of reverberation and intelligibility in medium-to-large multipurpose halls. Integer multi-wavelength gradient phase metagrating for perfect refraction: Phase choice freedom in supercella). Measurement of ocean currents by seafloor distributed optical-fiber acoustic sensing. Neville Fletcher's vibrant valve voyage. Office soundscape assessment: A model of acoustic environment perception in open-plan officesa).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1