Inbal Zigdon, Miri Carmi, Sagie Brodsky, Zohar Rosenwaser, Naama Barkai, Felix Jonas
{"title":"超越 RNA 结合域:蛋白质与 RNA 结合的决定因素。","authors":"Inbal Zigdon, Miri Carmi, Sagie Brodsky, Zohar Rosenwaser, Naama Barkai, Felix Jonas","doi":"10.1261/rna.080026.124","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1620-1633"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571813/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond RNA-binding domains: determinants of protein-RNA binding.\",\"authors\":\"Inbal Zigdon, Miri Carmi, Sagie Brodsky, Zohar Rosenwaser, Naama Barkai, Felix Jonas\",\"doi\":\"10.1261/rna.080026.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1620-1633\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080026.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080026.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Beyond RNA-binding domains: determinants of protein-RNA binding.
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.