寻找潜在的乙酰胆碱酯酶抑制剂:多步骤相似性搜索、机器学习和分子动力学模拟的组合方法。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1098/rsos.240546
Quynh Mai Thai, Minh Quan Pham, Phuong-Thao Tran, Trung Hai Nguyen, Son Tung Ngo
{"title":"寻找潜在的乙酰胆碱酯酶抑制剂:多步骤相似性搜索、机器学习和分子动力学模拟的组合方法。","authors":"Quynh Mai Thai, Minh Quan Pham, Phuong-Thao Tran, Trung Hai Nguyen, Son Tung Ngo","doi":"10.1098/rsos.240546","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240546"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Searching for potential acetylcholinesterase inhibitors: a combined approach of multi-step similarity search, machine learning and molecular dynamics simulations.\",\"authors\":\"Quynh Mai Thai, Minh Quan Pham, Phuong-Thao Tran, Trung Hai Nguyen, Son Tung Ngo\",\"doi\":\"10.1098/rsos.240546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"240546\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240546\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240546","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以乙酰胆碱酯酶为靶点是开发阿尔茨海默病治疗药物的最重要策略之一。在这项工作中,我们采用了一种新方法,将机器学习模型、PubChem 库的多步骤相似性搜索和分子动力学模拟结合起来,研究乙酰胆碱酯酶的潜在抑制剂。研究表明,我们的搜索策略极大地丰富了预测与乙酰胆碱酯酶结合亲和力强的化合物集。机器学习预测和基于线性相互作用能的结合自由能计算都表明,化合物 CID54414454 与乙酰胆碱酯酶的结合力很强,因此是一种很有前途的抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Searching for potential acetylcholinesterase inhibitors: a combined approach of multi-step similarity search, machine learning and molecular dynamics simulations.

Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Data-driven Huntington's disease progression modelling and estimation of societal cost in the UK. How the pandemic affected psychological research. Molecular, spectroscopic and thermochemical characterization of C2Cl3, C2F3 and C2Br3 radicals and related species. Numerical simulation study on the force of overwintering foundation support structure of unsaturated seasonal permafrost under indoor experiments. Synthesis and biological evaluation of diclofenac acid derivatives as potential lipoxygenase and α-glucosidase inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1