Tsuyoshi Nishiguchi, Kyosuke Yamanishi, Shivani Patel, Johnny R Malicoat, Nathan James Phuong, Tomoteru Seki, Takaya Ishii, Bun Aoyama, Akiyoshi Shimura, Nipun Gorantla, Takehiko Yamanashi, Masaaki Iwata, Andrew A Pieper, Gen Shinozaki
{"title":"通过双谱脑电图发现治疗感染相关谵妄的新型保护剂。","authors":"Tsuyoshi Nishiguchi, Kyosuke Yamanishi, Shivani Patel, Johnny R Malicoat, Nathan James Phuong, Tomoteru Seki, Takaya Ishii, Bun Aoyama, Akiyoshi Shimura, Nipun Gorantla, Takehiko Yamanashi, Masaaki Iwata, Andrew A Pieper, Gen Shinozaki","doi":"10.1038/s41398-024-03130-4","DOIUrl":null,"url":null,"abstract":"<p><p>Delirium is a multifactorial medical condition of waxing and waning impairment across various domains of mental functioning over time. Importantly, delirium is also one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Studying this important condition is challenging due to the difficulty in both objective diagnosis in patients and validation of laboratory models. As a result, there is a lack of protective treatments for delirium. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes, advancing the concept that this simple measure could represent an additional vital sign for patients. Here, we applied BSEEG to characterize and validate a novel lipopolysaccharide (LPS) mouse model of infection-related delirium. We then applied this model to evaluate the protective efficacy of three putative therapeutic agents: the conventional antipsychotic medication haloperidol, the neuroprotective compound P7C3-A20, and the antibiotic minocycline. Aged mice were more susceptible than young mice to LPS-induced aberration in BSEEG, reminiscent of the greater vulnerability of older adults to delirium. In both young and old mice, P7C3-A20 and minocycline administration prevented LPS-induced BSEEG abnormality. By contrast, haloperidol did not. P7C3-A20 and minocycline have been shown to limit different aspects of LPS toxicity, and our data offers proof of principle that these agents might help protect patients from developing infection-related delirium. Thus, utilization of BSEEG in a mouse model for infection-related delirium can identify putative therapeutic agents for applications in patient clinical trials.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"413"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447046/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel protective agents for infection-related delirium through bispectral electroencephalography.\",\"authors\":\"Tsuyoshi Nishiguchi, Kyosuke Yamanishi, Shivani Patel, Johnny R Malicoat, Nathan James Phuong, Tomoteru Seki, Takaya Ishii, Bun Aoyama, Akiyoshi Shimura, Nipun Gorantla, Takehiko Yamanashi, Masaaki Iwata, Andrew A Pieper, Gen Shinozaki\",\"doi\":\"10.1038/s41398-024-03130-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Delirium is a multifactorial medical condition of waxing and waning impairment across various domains of mental functioning over time. Importantly, delirium is also one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Studying this important condition is challenging due to the difficulty in both objective diagnosis in patients and validation of laboratory models. As a result, there is a lack of protective treatments for delirium. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes, advancing the concept that this simple measure could represent an additional vital sign for patients. Here, we applied BSEEG to characterize and validate a novel lipopolysaccharide (LPS) mouse model of infection-related delirium. We then applied this model to evaluate the protective efficacy of three putative therapeutic agents: the conventional antipsychotic medication haloperidol, the neuroprotective compound P7C3-A20, and the antibiotic minocycline. Aged mice were more susceptible than young mice to LPS-induced aberration in BSEEG, reminiscent of the greater vulnerability of older adults to delirium. In both young and old mice, P7C3-A20 and minocycline administration prevented LPS-induced BSEEG abnormality. By contrast, haloperidol did not. P7C3-A20 and minocycline have been shown to limit different aspects of LPS toxicity, and our data offers proof of principle that these agents might help protect patients from developing infection-related delirium. Thus, utilization of BSEEG in a mouse model for infection-related delirium can identify putative therapeutic agents for applications in patient clinical trials.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"14 1\",\"pages\":\"413\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447046/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-024-03130-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03130-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Discovery of novel protective agents for infection-related delirium through bispectral electroencephalography.
Delirium is a multifactorial medical condition of waxing and waning impairment across various domains of mental functioning over time. Importantly, delirium is also one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Studying this important condition is challenging due to the difficulty in both objective diagnosis in patients and validation of laboratory models. As a result, there is a lack of protective treatments for delirium. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes, advancing the concept that this simple measure could represent an additional vital sign for patients. Here, we applied BSEEG to characterize and validate a novel lipopolysaccharide (LPS) mouse model of infection-related delirium. We then applied this model to evaluate the protective efficacy of three putative therapeutic agents: the conventional antipsychotic medication haloperidol, the neuroprotective compound P7C3-A20, and the antibiotic minocycline. Aged mice were more susceptible than young mice to LPS-induced aberration in BSEEG, reminiscent of the greater vulnerability of older adults to delirium. In both young and old mice, P7C3-A20 and minocycline administration prevented LPS-induced BSEEG abnormality. By contrast, haloperidol did not. P7C3-A20 and minocycline have been shown to limit different aspects of LPS toxicity, and our data offers proof of principle that these agents might help protect patients from developing infection-related delirium. Thus, utilization of BSEEG in a mouse model for infection-related delirium can identify putative therapeutic agents for applications in patient clinical trials.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.