David Mikhail, Daniel Milad, Fares Antaki, Karim Hammamji, Cynthia X Qian, Flavio A Rezende, Renaud Duval
{"title":"人工智能在黄斑孔管理中的作用:范围综述。","authors":"David Mikhail, Daniel Milad, Fares Antaki, Karim Hammamji, Cynthia X Qian, Flavio A Rezende, Renaud Duval","doi":"10.1016/j.survophthal.2024.09.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Narrative abstract: </strong>We focus on the utility of artificial intelligence (AI) in the management of macular hole (MH). We synthesize 25 studies, comprehensively reporting on each AI model's development strategy, validation, tasks, performance, strengths, and limitations. All models analyzed ophthalmic images, and 5 (20 %) also analyzed clinical features. Study objectives were categorized based on 3 stages of MH care: diagnosis, identification of MH characteristics, and postoperative predictions of hole closure and vision recovery. Twenty-two (88 %) AI models underwent supervised learning, and the models were most often deployed to determine a MH diagnosis. None of the articles applied AI to guiding treatment plans. AI model performance was compared to other algorithms and to human graders. Of the 10 studies comparing AI to human graders (i.e., retinal specialists, general ophthalmologists, and ophthalmology trainees), 5 (50 %) reported equivalent or higher performance. Overall, AI analysis of images and clinical characteristics in MH demonstrated high diagnostic and predictive accuracy. Convolutional neural networks comprised the majority of included AI models, including those which were high performing. Future research may consider validating algorithms to propose personalized treatment plans and explore clinical use of the aforementioned algorithms.</p>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of artificial intelligence in macular hole management: A scoping review.\",\"authors\":\"David Mikhail, Daniel Milad, Fares Antaki, Karim Hammamji, Cynthia X Qian, Flavio A Rezende, Renaud Duval\",\"doi\":\"10.1016/j.survophthal.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Narrative abstract: </strong>We focus on the utility of artificial intelligence (AI) in the management of macular hole (MH). We synthesize 25 studies, comprehensively reporting on each AI model's development strategy, validation, tasks, performance, strengths, and limitations. All models analyzed ophthalmic images, and 5 (20 %) also analyzed clinical features. Study objectives were categorized based on 3 stages of MH care: diagnosis, identification of MH characteristics, and postoperative predictions of hole closure and vision recovery. Twenty-two (88 %) AI models underwent supervised learning, and the models were most often deployed to determine a MH diagnosis. None of the articles applied AI to guiding treatment plans. AI model performance was compared to other algorithms and to human graders. Of the 10 studies comparing AI to human graders (i.e., retinal specialists, general ophthalmologists, and ophthalmology trainees), 5 (50 %) reported equivalent or higher performance. Overall, AI analysis of images and clinical characteristics in MH demonstrated high diagnostic and predictive accuracy. Convolutional neural networks comprised the majority of included AI models, including those which were high performing. Future research may consider validating algorithms to propose personalized treatment plans and explore clinical use of the aforementioned algorithms.</p>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.survophthal.2024.09.003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.survophthal.2024.09.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
The role of artificial intelligence in macular hole management: A scoping review.
Narrative abstract: We focus on the utility of artificial intelligence (AI) in the management of macular hole (MH). We synthesize 25 studies, comprehensively reporting on each AI model's development strategy, validation, tasks, performance, strengths, and limitations. All models analyzed ophthalmic images, and 5 (20 %) also analyzed clinical features. Study objectives were categorized based on 3 stages of MH care: diagnosis, identification of MH characteristics, and postoperative predictions of hole closure and vision recovery. Twenty-two (88 %) AI models underwent supervised learning, and the models were most often deployed to determine a MH diagnosis. None of the articles applied AI to guiding treatment plans. AI model performance was compared to other algorithms and to human graders. Of the 10 studies comparing AI to human graders (i.e., retinal specialists, general ophthalmologists, and ophthalmology trainees), 5 (50 %) reported equivalent or higher performance. Overall, AI analysis of images and clinical characteristics in MH demonstrated high diagnostic and predictive accuracy. Convolutional neural networks comprised the majority of included AI models, including those which were high performing. Future research may consider validating algorithms to propose personalized treatment plans and explore clinical use of the aforementioned algorithms.
期刊介绍:
Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.