Supral Adhikari, Asha Mudalige, Lydia Phillips, Hyeyoung Lee, Vivian Bernal-Galeano, Hope Gruszewski, James H Westwood, So-Yon Park
{"title":"农杆菌介导的菟丝子转化是了解植物与植物之间相互作用的一种工具。","authors":"Supral Adhikari, Asha Mudalige, Lydia Phillips, Hyeyoung Lee, Vivian Bernal-Galeano, Hope Gruszewski, James H Westwood, So-Yon Park","doi":"10.1111/nph.20140","DOIUrl":null,"url":null,"abstract":"<p><p>Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agrobacterium-mediated Cuscuta campestris transformation as a tool for understanding plant-plant interactions.\",\"authors\":\"Supral Adhikari, Asha Mudalige, Lydia Phillips, Hyeyoung Lee, Vivian Bernal-Galeano, Hope Gruszewski, James H Westwood, So-Yon Park\",\"doi\":\"10.1111/nph.20140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20140\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20140","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
菟丝子是一种茎寄生植物,是探索植物间相互作用和分子贩运的重要模式植物。然而,菟丝子研究的一个主要障碍是尚未开发出产生稳定转基因植物的方法。在此,我们介绍了利用各种报告基因(GFP、GUS 或 RUBY)和形态发生基因(CcWUS2 和 CcGRF/GIF)开发的菟丝子转化方案,从而形成了农杆菌介导的野油菜转化的稳健方案。稳定转化和再生的 RUBY C. campestris 植株会产生寄生植物的标志性器官--菌丝体,这些菌丝体在形成寄主附着物方面具有功能性。通过 TAIL-PCR 确认了寄生虫基因组中 T-DNA 整合的位置。经转化的 C. campestris 还能开出花朵并结出有生命力的转基因种子,显示出甜菜素色素,证明了 RUBY 转基因的种系传播。此外,RUBY 不仅是农杆菌介导的转化过程中有用的选择性标记,而且还能让人了解野油菜分子在寄生过程中向宿主的移动。因此,本文报告的野油菜转化方案克服了菟丝子研究的一个主要障碍,为研究寄生植物及其与宿主的相互作用提供了新的可能性。
Agrobacterium-mediated Cuscuta campestris transformation as a tool for understanding plant-plant interactions.
Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.