{"title":"生姜纳米微粒通过 Nrf2 途径抑制氧化应激,从而减缓骨关节炎的进展。","authors":"Yiming Zeng, Shun Yu, Lin Lu, Jun Zhang, Chen Xu","doi":"10.1080/17435889.2024.2403324","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.<b>Materials & methods:</b> In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and <i>ex vivo</i> cultured human OA cartilage explants.<b>Results:</b> We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.<b>Conclusion:</b> Altogether, our findings demonstrated GDN hold great potential for OA treatment.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"2357-2373"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway.\",\"authors\":\"Yiming Zeng, Shun Yu, Lin Lu, Jun Zhang, Chen Xu\",\"doi\":\"10.1080/17435889.2024.2403324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.<b>Materials & methods:</b> In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and <i>ex vivo</i> cultured human OA cartilage explants.<b>Results:</b> We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.<b>Conclusion:</b> Altogether, our findings demonstrated GDN hold great potential for OA treatment.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"2357-2373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2024.2403324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2024.2403324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目的:骨关节炎(OA)是一种常见的退行性关节疾病。先前的研究表明,生姜外泌体纳米颗粒(GDN)对退行性疾病有治疗作用。材料与方法:在这项研究中,我们获得了 GDN 并对其进行了表征。然后,我们评估了 GDN 在叔丁基过氧化氢(TBHP)诱导的软骨细胞、创伤后 OA 大鼠模型和体外培养的人类 OA 软骨外植体中的作用:结果:我们发现 GDN 促进了软骨的新陈代谢,缓解了 TBHP 诱导的软骨细胞和 OA 大鼠的氧化应激。我们的结果还表明,GDN 对培养的软骨外植体具有保护作用。此外,我们还验证了 Nrf2 通路与 GDN 的保护作用有关:总之,我们的研究结果表明,GDN 在治疗 OA 方面具有巨大潜力。
Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway.
Aim: Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.Materials & methods: In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and ex vivo cultured human OA cartilage explants.Results: We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.Conclusion: Altogether, our findings demonstrated GDN hold great potential for OA treatment.