生姜纳米微粒通过 Nrf2 途径抑制氧化应激,从而减缓骨关节炎的进展。

Nanomedicine (London, England) Pub Date : 2024-01-01 Epub Date: 2024-10-03 DOI:10.1080/17435889.2024.2403324
Yiming Zeng, Shun Yu, Lin Lu, Jun Zhang, Chen Xu
{"title":"生姜纳米微粒通过 Nrf2 途径抑制氧化应激,从而减缓骨关节炎的进展。","authors":"Yiming Zeng, Shun Yu, Lin Lu, Jun Zhang, Chen Xu","doi":"10.1080/17435889.2024.2403324","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.<b>Materials & methods:</b> In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and <i>ex vivo</i> cultured human OA cartilage explants.<b>Results:</b> We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.<b>Conclusion:</b> Altogether, our findings demonstrated GDN hold great potential for OA treatment.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"2357-2373"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway.\",\"authors\":\"Yiming Zeng, Shun Yu, Lin Lu, Jun Zhang, Chen Xu\",\"doi\":\"10.1080/17435889.2024.2403324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.<b>Materials & methods:</b> In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and <i>ex vivo</i> cultured human OA cartilage explants.<b>Results:</b> We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.<b>Conclusion:</b> Altogether, our findings demonstrated GDN hold great potential for OA treatment.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"2357-2373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2024.2403324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2024.2403324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:骨关节炎(OA)是一种常见的退行性关节疾病。先前的研究表明,生姜外泌体纳米颗粒(GDN)对退行性疾病有治疗作用。材料与方法:在这项研究中,我们获得了 GDN 并对其进行了表征。然后,我们评估了 GDN 在叔丁基过氧化氢(TBHP)诱导的软骨细胞、创伤后 OA 大鼠模型和体外培养的人类 OA 软骨外植体中的作用:结果:我们发现 GDN 促进了软骨的新陈代谢,缓解了 TBHP 诱导的软骨细胞和 OA 大鼠的氧化应激。我们的结果还表明,GDN 对培养的软骨外植体具有保护作用。此外,我们还验证了 Nrf2 通路与 GDN 的保护作用有关:总之,我们的研究结果表明,GDN 在治疗 OA 方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway.

Aim: Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.Materials & methods: In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and ex vivo cultured human OA cartilage explants.Results: We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.Conclusion: Altogether, our findings demonstrated GDN hold great potential for OA treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasmall solid lipid nanoparticles as a potential innovative delivery system for a drug combination against glioma. Advances in Alzheimer's disease control approaches via carbon nanotubes. CD133-targeted afatinib nanomicelles for enhanced lung cancer theranostics. Correction. The emergence of inhalable RNA therapeutics and challenges faced - where to from here?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1