Vinayak Vijayan , Shanpu Fang , Timothy Reissman , Allison L. Kinney , Megan E. Reissman
{"title":"中年人步速变化的机制:同时分析幅度和时间效应。","authors":"Vinayak Vijayan , Shanpu Fang , Timothy Reissman , Allison L. Kinney , Megan E. Reissman","doi":"10.1016/j.gaitpost.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Middle-aged adults represent the transition between younger and older adults, where some of the characteristic gait differences due to aging begins to surface. However, the gait characteristics of middle-aged adults across the whole gait cycle remains an understudied topic. As speed is a sensitive indicator of health, characterizing the effects of speed on the gait of middle-aged adults and differentiating it from the response of young adults will provide insights into the effects of aging on gait speed modulation mechanisms.</div></div><div><h3>Research question</h3><div>What are the mechanisms of gait speed changes that are employed by middle-aged adults, and how are they different from younger adults?</div></div><div><h3>Methods</h3><div>A cohort of healthy young and middle-aged adults completed 60 second trials at three different speeds. Joint kinematics, kinetics, and surface electromyography data were analyzed and compared between the speed levels and age groups. Statistical Parametric Mapping along with a nonlinear curve registration algorithm was used to simultaneously assess the changes in both magnitude and timing of different metrics.</div></div><div><h3>Results</h3><div>When compared to the younger cohort, the middle-aged cohort had significantly lower ankle range of motion, dorsiflexion moment during loading response and plantarflexion moment during push-off. At the knee joint, the middle-aged adults had significantly lower knee flexion moment during stance. At the hip joint, the middle-aged adults had lower extension moment during terminal stance.</div></div><div><h3>Significance</h3><div>Time-continuous analysis showed that primary differences due to age were related to decreased joint range of motion and joint moment production capability in the middle-aged adults. Faster walking appears a safe method for middle-aged adults to increase joint range of motion and joint moment expression. However, targeted interventions that focus on improving capability are likely also needed. Suggested targets being improving ankle and knee joint moment capability, and increased range of motion at all joints.</div></div>","PeriodicalId":12496,"journal":{"name":"Gait & posture","volume":"114 ","pages":"Pages 193-201"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects\",\"authors\":\"Vinayak Vijayan , Shanpu Fang , Timothy Reissman , Allison L. Kinney , Megan E. Reissman\",\"doi\":\"10.1016/j.gaitpost.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Middle-aged adults represent the transition between younger and older adults, where some of the characteristic gait differences due to aging begins to surface. However, the gait characteristics of middle-aged adults across the whole gait cycle remains an understudied topic. As speed is a sensitive indicator of health, characterizing the effects of speed on the gait of middle-aged adults and differentiating it from the response of young adults will provide insights into the effects of aging on gait speed modulation mechanisms.</div></div><div><h3>Research question</h3><div>What are the mechanisms of gait speed changes that are employed by middle-aged adults, and how are they different from younger adults?</div></div><div><h3>Methods</h3><div>A cohort of healthy young and middle-aged adults completed 60 second trials at three different speeds. Joint kinematics, kinetics, and surface electromyography data were analyzed and compared between the speed levels and age groups. Statistical Parametric Mapping along with a nonlinear curve registration algorithm was used to simultaneously assess the changes in both magnitude and timing of different metrics.</div></div><div><h3>Results</h3><div>When compared to the younger cohort, the middle-aged cohort had significantly lower ankle range of motion, dorsiflexion moment during loading response and plantarflexion moment during push-off. At the knee joint, the middle-aged adults had significantly lower knee flexion moment during stance. At the hip joint, the middle-aged adults had lower extension moment during terminal stance.</div></div><div><h3>Significance</h3><div>Time-continuous analysis showed that primary differences due to age were related to decreased joint range of motion and joint moment production capability in the middle-aged adults. Faster walking appears a safe method for middle-aged adults to increase joint range of motion and joint moment expression. However, targeted interventions that focus on improving capability are likely also needed. Suggested targets being improving ankle and knee joint moment capability, and increased range of motion at all joints.</div></div>\",\"PeriodicalId\":12496,\"journal\":{\"name\":\"Gait & posture\",\"volume\":\"114 \",\"pages\":\"Pages 193-201\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966636224006246\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966636224006246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects
Background
Middle-aged adults represent the transition between younger and older adults, where some of the characteristic gait differences due to aging begins to surface. However, the gait characteristics of middle-aged adults across the whole gait cycle remains an understudied topic. As speed is a sensitive indicator of health, characterizing the effects of speed on the gait of middle-aged adults and differentiating it from the response of young adults will provide insights into the effects of aging on gait speed modulation mechanisms.
Research question
What are the mechanisms of gait speed changes that are employed by middle-aged adults, and how are they different from younger adults?
Methods
A cohort of healthy young and middle-aged adults completed 60 second trials at three different speeds. Joint kinematics, kinetics, and surface electromyography data were analyzed and compared between the speed levels and age groups. Statistical Parametric Mapping along with a nonlinear curve registration algorithm was used to simultaneously assess the changes in both magnitude and timing of different metrics.
Results
When compared to the younger cohort, the middle-aged cohort had significantly lower ankle range of motion, dorsiflexion moment during loading response and plantarflexion moment during push-off. At the knee joint, the middle-aged adults had significantly lower knee flexion moment during stance. At the hip joint, the middle-aged adults had lower extension moment during terminal stance.
Significance
Time-continuous analysis showed that primary differences due to age were related to decreased joint range of motion and joint moment production capability in the middle-aged adults. Faster walking appears a safe method for middle-aged adults to increase joint range of motion and joint moment expression. However, targeted interventions that focus on improving capability are likely also needed. Suggested targets being improving ankle and knee joint moment capability, and increased range of motion at all joints.
期刊介绍:
Gait & Posture is a vehicle for the publication of up-to-date basic and clinical research on all aspects of locomotion and balance.
The topics covered include: Techniques for the measurement of gait and posture, and the standardization of results presentation; Studies of normal and pathological gait; Treatment of gait and postural abnormalities; Biomechanical and theoretical approaches to gait and posture; Mathematical models of joint and muscle mechanics; Neurological and musculoskeletal function in gait and posture; The evolution of upright posture and bipedal locomotion; Adaptations of carrying loads, walking on uneven surfaces, climbing stairs etc; spinal biomechanics only if they are directly related to gait and/or posture and are of general interest to our readers; The effect of aging and development on gait and posture; Psychological and cultural aspects of gait; Patient education.