角膜疾病中 NLRP3 炎症体的最新研究进展:临床前见解和治疗意义。

IF 5.9 1区 医学 Q1 OPHTHALMOLOGY Ocular Surface Pub Date : 2024-10-01 DOI:10.1016/j.jtos.2024.09.007
Jiayun Ge , Xiang Li , Yutong Xia , Zhitong Chen , Chen Xie , Yuan Zhao , Kuangqi Chen , Ye Shen , Jianping Tong
{"title":"角膜疾病中 NLRP3 炎症体的最新研究进展:临床前见解和治疗意义。","authors":"Jiayun Ge ,&nbsp;Xiang Li ,&nbsp;Yutong Xia ,&nbsp;Zhitong Chen ,&nbsp;Chen Xie ,&nbsp;Yuan Zhao ,&nbsp;Kuangqi Chen ,&nbsp;Ye Shen ,&nbsp;Jianping Tong","doi":"10.1016/j.jtos.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.</div></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"34 ","pages":"Pages 392-405"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in NLRP3 inflammasome in corneal diseases: Preclinical insights and therapeutic implications\",\"authors\":\"Jiayun Ge ,&nbsp;Xiang Li ,&nbsp;Yutong Xia ,&nbsp;Zhitong Chen ,&nbsp;Chen Xie ,&nbsp;Yuan Zhao ,&nbsp;Kuangqi Chen ,&nbsp;Ye Shen ,&nbsp;Jianping Tong\",\"doi\":\"10.1016/j.jtos.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.</div></div>\",\"PeriodicalId\":54691,\"journal\":{\"name\":\"Ocular Surface\",\"volume\":\"34 \",\"pages\":\"Pages 392-405\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocular Surface\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1542012424001034\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542012424001034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

NLRP3 炎症小体是一种细胞膜多蛋白复合物,在外源性环境压力和细胞损伤时形成。NLRP3 炎症体的三个主要成分是先天免疫受体蛋白 NLRP3、含有 C 端树突酶激活和招募结构域的适配蛋白凋亡相关斑点样蛋白和炎症蛋白酶树突酶-1。整合后的 NLRP3 炎性体触发了 caspase-1 的活化,导致依赖于 GSDMD 的热凋亡,并促进炎性细胞因子(即白细胞介素(IL)-18 和 IL-1β)的成熟和释放。然而,NLRP3 炎性体介导的炎症反应在先天性免疫防御和细胞稳态中表现出双重功能。NLRP3 炎性体的异常激活与各种角膜疾病的病因和病理生理学有关。角膜碱灼伤可通过激活 NLRP3 炎性体诱发角膜热变态反应、中性粒细胞浸润和角膜血管生成。当各种病原体侵入角膜时,NLRP3 炎症小体识别病原体相关分子模式或损伤相关分子模式,参与促炎和抗炎机制。此外,NLRP3 炎性体介导的慢性炎症和促炎级联也是糖尿病角膜病的发病机制之一。此外,活性氧的过度产生、线粒体功能障碍以及收费样受体介导的核因子卡巴B的活化,都会刺激NLRP3炎性体,并参与干眼症的进展。然而,关于 NLRP3 炎症小体的调控途径仍存在争议。在这篇综述中,我们主要通过对动物模型的研究,全面概述了 NLRP3 炎症小体在角膜疾病中的功能及其调控途径的最新进展。此外,我们还探讨了以 NLRP3 相关途径为药物靶点的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in NLRP3 inflammasome in corneal diseases: Preclinical insights and therapeutic implications
NLRP3 inflammasome is a cytosolic multiprotein complex formed in response to exogenous environmental stress and cellular damage. The three major components of the NLRP3 inflammasome are the innate immunoreceptor protein NLRP3, the adapter protein apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain, and the inflammatory protease enzyme caspase-1. The integrated NLRP3 inflammasome triggers the activation of caspase-1, leading to GSDMD-dependent pyroptosis and facilitating the maturation and release of inflammatory cytokines, namely interleukin (IL)-18 and IL-1β. However, the inflammatory responses mediated by the NLRP3 inflammasome exhibit dual functions in innate immune defense and cellular homeostasis. Aberrant activation of the NLRP3 inflammasome matters in the etiology and pathophysiology of various corneal diseases. Corneal alkali burn can induce pyroptosis, neutrophil infiltration, and corneal angiogenesis via the activation of NLRP3 inflammasome. When various pathogens invade the cornea, NLRP3 inflammasome recognizes pathogen-associated molecular patterns or damage-associated molecular patterns to engage in pro-inflammatory and anti-inflammatory mechanisms. Moreover, chronic inflammation and proinflammatory cascades mediated by the NLRP3 inflammasome contribute to the pathogenesis of diabetic keratopathy. Furthermore, overproduction of reactive oxygen species, mitochondrial dysfunction, and toll-like receptor-mediated activation of nuclear factor kappa B drive the stimulation of NLRP3 inflammasome and participate in the progression of dry eye disease. However, there still exist controversies regarding the regulatory pathways of the NLRP3 inflammasome. In this review, we provide a comprehensive overview of recent advancements in the function of NLRP3 inflammasome in corneal diseases and its regulatory pathways primarily through studies using animal models. Furthermore, we explore prospects for pharmacologically targeting pathways associated with NLRP3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocular Surface
Ocular Surface 医学-眼科学
CiteScore
11.60
自引率
14.10%
发文量
97
审稿时长
39 days
期刊介绍: The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center
期刊最新文献
Blinded by smoke: Wildfire smoke exposure and eye irritation in australian wildland firefighters Diagnostic performance and optimal cut-off values for tear film lipid layer grading and thickness in dry eye disease: An investigator-masked, randomised crossover study BMAL1 deficiency provokes dry mouth and eyes by down-regulating ITPR2/3 Development of human amniotic epithelial cell-derived extracellular vesicles as cell-free therapy for dry eye disease Metabolomics of basal tears in amyotrophic lateral sclerosis: A cross-sectional study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1