{"title":"通过融合语言和语义特征对社交媒体中的焦虑相关文本进行情感分类","authors":"Jianghong Zhu;Zhenwen Zhang;Zhihua Guo;Zepeng Li","doi":"10.1109/TCSS.2024.3410391","DOIUrl":null,"url":null,"abstract":"Anxiety disorder is a common mental disorder that has received increasing attention due to its high incidence, comorbidity, and recurrence. In recent years, with the rapid development of information technology, social media platforms have become a crucial source of data for studying anxiety disorders. Existing studies on anxiety disorders have focused on utilizing user-generated contents to study correlations with disorders or identify disorders. However, these studies overlook the emotional information in social media posts, restraining the effective capture of users’ emotions or mental states when posting. This article focuses on the sentiment polarity of anxiety-related posts on a Chinese social media and designs sentiment classification models via fuzing linguistic and semantic features of the posts. First, we extract the linguistic features from posts based on the simplified Chinese–Linguistic inquiry and word count (SC-LIWC) dictionary, and propose a novel recursive feature selection algorithm to reserve important linguistic features. Second, we propose a TextCNN-based model to study the deep semantic features of posts and fuze their linguistic features to obtain a better representation. Finally, to conduct anxiety analysis on Chinese social media, we construct a postlevel sentiment analysis dataset based on anxiety-related posts on Sina Weibo. The experimental results indicate that our proposed fusion models exhibit better performance in the task of identifying the sentiment polarity of anxiety-related posts on Chinese social media.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 5","pages":"6819-6829"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Classification of Anxiety-Related Texts in Social Media via Fuzing Linguistic and Semantic Features\",\"authors\":\"Jianghong Zhu;Zhenwen Zhang;Zhihua Guo;Zepeng Li\",\"doi\":\"10.1109/TCSS.2024.3410391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anxiety disorder is a common mental disorder that has received increasing attention due to its high incidence, comorbidity, and recurrence. In recent years, with the rapid development of information technology, social media platforms have become a crucial source of data for studying anxiety disorders. Existing studies on anxiety disorders have focused on utilizing user-generated contents to study correlations with disorders or identify disorders. However, these studies overlook the emotional information in social media posts, restraining the effective capture of users’ emotions or mental states when posting. This article focuses on the sentiment polarity of anxiety-related posts on a Chinese social media and designs sentiment classification models via fuzing linguistic and semantic features of the posts. First, we extract the linguistic features from posts based on the simplified Chinese–Linguistic inquiry and word count (SC-LIWC) dictionary, and propose a novel recursive feature selection algorithm to reserve important linguistic features. Second, we propose a TextCNN-based model to study the deep semantic features of posts and fuze their linguistic features to obtain a better representation. Finally, to conduct anxiety analysis on Chinese social media, we construct a postlevel sentiment analysis dataset based on anxiety-related posts on Sina Weibo. The experimental results indicate that our proposed fusion models exhibit better performance in the task of identifying the sentiment polarity of anxiety-related posts on Chinese social media.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"11 5\",\"pages\":\"6819-6829\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601651/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10601651/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Sentiment Classification of Anxiety-Related Texts in Social Media via Fuzing Linguistic and Semantic Features
Anxiety disorder is a common mental disorder that has received increasing attention due to its high incidence, comorbidity, and recurrence. In recent years, with the rapid development of information technology, social media platforms have become a crucial source of data for studying anxiety disorders. Existing studies on anxiety disorders have focused on utilizing user-generated contents to study correlations with disorders or identify disorders. However, these studies overlook the emotional information in social media posts, restraining the effective capture of users’ emotions or mental states when posting. This article focuses on the sentiment polarity of anxiety-related posts on a Chinese social media and designs sentiment classification models via fuzing linguistic and semantic features of the posts. First, we extract the linguistic features from posts based on the simplified Chinese–Linguistic inquiry and word count (SC-LIWC) dictionary, and propose a novel recursive feature selection algorithm to reserve important linguistic features. Second, we propose a TextCNN-based model to study the deep semantic features of posts and fuze their linguistic features to obtain a better representation. Finally, to conduct anxiety analysis on Chinese social media, we construct a postlevel sentiment analysis dataset based on anxiety-related posts on Sina Weibo. The experimental results indicate that our proposed fusion models exhibit better performance in the task of identifying the sentiment polarity of anxiety-related posts on Chinese social media.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.