{"title":"用于免滤光片彩色单像素成像 (SPI) 的 Ti₃C₂Tₓ/Si 纳米孔阵列 (SiNHA) 肖特基光电二极管","authors":"Jinxulong Gao;Xinhui He;Wei Shu;Yizhong Yang;Xing Chen;Linbao Luo;Chunyan Wu","doi":"10.1109/LED.2024.3445951","DOIUrl":null,"url":null,"abstract":"In this letter, we report a self-powered Ti\n<sub>3</sub>\nC\n<sub>2</sub>\nT\n<sub>x</sub>\n/Si nanoholes array (SiNHA) Schottky photodiode fabricated by spin-coating Ti\n<sub>3</sub>\nC\n<sub>2</sub>\nT\n<sub>x</sub>\n layer. The device exhibited enhanced photoresponse over the broadband wavelength range (265-1200 nm) and an excellent linear dynamic range (LDR, 119 dB), showing responsivity, specific detectivity and response speed of 0.97 A W\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$1.03\\times 10^{{14}}$ </tex-math></inline-formula>\n Jones and 162/\n<inline-formula> <tex-math>$60~\\mu $ </tex-math></inline-formula>\ns for rise/fall time at zero bias upon 970 nm illumination (light intensity: \n<inline-formula> <tex-math>$2.5~\\mu $ </tex-math></inline-formula>\nW cm\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n), respectively. The broadband photoresponse ensured the high-quality visible Fourier single-pixel imaging (FSI) and a \n<inline-formula> <tex-math>$256\\times 256$ </tex-math></inline-formula>\n-pixel color image was achieved by synthesizing R-, G-, and B-channel monochrome images obtained at 7.79% sampling rate. This work also provides a simple strategy for filter-free color single-pixel imaging (SPI).","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1914-1917"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ti₃C₂Tₓ/Si Nanoholes Array (SiNHA) Schottky Photodiode for Filter-Free Color Single-Pixel Imaging (SPI)\",\"authors\":\"Jinxulong Gao;Xinhui He;Wei Shu;Yizhong Yang;Xing Chen;Linbao Luo;Chunyan Wu\",\"doi\":\"10.1109/LED.2024.3445951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we report a self-powered Ti\\n<sub>3</sub>\\nC\\n<sub>2</sub>\\nT\\n<sub>x</sub>\\n/Si nanoholes array (SiNHA) Schottky photodiode fabricated by spin-coating Ti\\n<sub>3</sub>\\nC\\n<sub>2</sub>\\nT\\n<sub>x</sub>\\n layer. The device exhibited enhanced photoresponse over the broadband wavelength range (265-1200 nm) and an excellent linear dynamic range (LDR, 119 dB), showing responsivity, specific detectivity and response speed of 0.97 A W\\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$1.03\\\\times 10^{{14}}$ </tex-math></inline-formula>\\n Jones and 162/\\n<inline-formula> <tex-math>$60~\\\\mu $ </tex-math></inline-formula>\\ns for rise/fall time at zero bias upon 970 nm illumination (light intensity: \\n<inline-formula> <tex-math>$2.5~\\\\mu $ </tex-math></inline-formula>\\nW cm\\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\\n), respectively. The broadband photoresponse ensured the high-quality visible Fourier single-pixel imaging (FSI) and a \\n<inline-formula> <tex-math>$256\\\\times 256$ </tex-math></inline-formula>\\n-pixel color image was achieved by synthesizing R-, G-, and B-channel monochrome images obtained at 7.79% sampling rate. This work also provides a simple strategy for filter-free color single-pixel imaging (SPI).\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 10\",\"pages\":\"1914-1917\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10639457/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10639457/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在这封信中,我们报告了一种通过旋涂 Ti3C2Tx 层制造的自供电 Ti3C2Tx/Si 纳米孔阵列(SiNHA)肖特基光电二极管。该器件在宽带波长范围(265-1200 nm)内表现出更强的光响应能力和出色的线性动态范围(LDR,119 dB),其响应率、比检出率和响应速度均为 0.97 A W $^{-{1}}$ 、1.03/times 10^{{14}}$ Jones 和 162/ $60~\mu $ s 的上升/下降时间,分别是在 970 nm 照明(光强:2.5~\mu $ W cm $^{-{2}}$ )时的零偏压条件下。宽带光响应确保了高质量的可见光傅立叶单像素成像(FSI),通过合成以 7.79% 采样率获得的 R、G 和 B 信道单色图像,实现了 256/times 256$ 像素的彩色图像。这项工作还为无滤波器彩色单像素成像(SPI)提供了一种简单的策略。
Ti₃C₂Tₓ/Si Nanoholes Array (SiNHA) Schottky Photodiode for Filter-Free Color Single-Pixel Imaging (SPI)
In this letter, we report a self-powered Ti
3
C
2
T
x
/Si nanoholes array (SiNHA) Schottky photodiode fabricated by spin-coating Ti
3
C
2
T
x
layer. The device exhibited enhanced photoresponse over the broadband wavelength range (265-1200 nm) and an excellent linear dynamic range (LDR, 119 dB), showing responsivity, specific detectivity and response speed of 0.97 A W
$^{-{1}}$
,
$1.03\times 10^{{14}}$
Jones and 162/
$60~\mu $
s for rise/fall time at zero bias upon 970 nm illumination (light intensity:
$2.5~\mu $
W cm
$^{-{2}}$
), respectively. The broadband photoresponse ensured the high-quality visible Fourier single-pixel imaging (FSI) and a
$256\times 256$
-pixel color image was achieved by synthesizing R-, G-, and B-channel monochrome images obtained at 7.79% sampling rate. This work also provides a simple strategy for filter-free color single-pixel imaging (SPI).
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.