{"title":"用于快速稳定近红外测量的双模热压阻耦合谐振器,带差分输出","authors":"Aojie Quan;Chen Wang;Hemin Zhang;Michael Kraft","doi":"10.1109/LED.2024.3443128","DOIUrl":null,"url":null,"abstract":"This study reports a resonant Near-Infrared (NIR) detector based on dual-mode, self-oscillating Thermal-Piezoresistive Coupled Resonators. The resented device alleviates the current trade-offs between resolution and response time in Microelectromechanical Systems (MEMS) thermal detectors. The thermal-piezoresistive coupled resonators operate simultaneously in the in-phase and out-of-phase modes and the frequency difference between two modes is selected as the output metric. The square-shaped coupling area of the coupled resonators acted as the NIR sensing region because of its low thermal resistance. Our design demonstrated a \n<inline-formula> <tex-math>$700~\\mu {s}$ </tex-math></inline-formula>\n response time, achieving 700-fold improvement compared to the conventional single-frequency output methods. Further, the differential output method inherently compensates for temperature drift, significantly increasing the immunity of device to thermal crosstalk by a factor of 25. A noise equivalent power density resolution of 253 pW/\n<inline-formula> <tex-math>$\\sqrt {\\textit {Hz}}$ </tex-math></inline-formula>\n is achieved.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1953-1956"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Mode Thermal-Piezoresistive Coupled Resonators for Fast and Stable NIR Measurements With Differential Output\",\"authors\":\"Aojie Quan;Chen Wang;Hemin Zhang;Michael Kraft\",\"doi\":\"10.1109/LED.2024.3443128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports a resonant Near-Infrared (NIR) detector based on dual-mode, self-oscillating Thermal-Piezoresistive Coupled Resonators. The resented device alleviates the current trade-offs between resolution and response time in Microelectromechanical Systems (MEMS) thermal detectors. The thermal-piezoresistive coupled resonators operate simultaneously in the in-phase and out-of-phase modes and the frequency difference between two modes is selected as the output metric. The square-shaped coupling area of the coupled resonators acted as the NIR sensing region because of its low thermal resistance. Our design demonstrated a \\n<inline-formula> <tex-math>$700~\\\\mu {s}$ </tex-math></inline-formula>\\n response time, achieving 700-fold improvement compared to the conventional single-frequency output methods. Further, the differential output method inherently compensates for temperature drift, significantly increasing the immunity of device to thermal crosstalk by a factor of 25. A noise equivalent power density resolution of 253 pW/\\n<inline-formula> <tex-math>$\\\\sqrt {\\\\textit {Hz}}$ </tex-math></inline-formula>\\n is achieved.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 10\",\"pages\":\"1953-1956\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10639490/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10639490/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dual-Mode Thermal-Piezoresistive Coupled Resonators for Fast and Stable NIR Measurements With Differential Output
This study reports a resonant Near-Infrared (NIR) detector based on dual-mode, self-oscillating Thermal-Piezoresistive Coupled Resonators. The resented device alleviates the current trade-offs between resolution and response time in Microelectromechanical Systems (MEMS) thermal detectors. The thermal-piezoresistive coupled resonators operate simultaneously in the in-phase and out-of-phase modes and the frequency difference between two modes is selected as the output metric. The square-shaped coupling area of the coupled resonators acted as the NIR sensing region because of its low thermal resistance. Our design demonstrated a
$700~\mu {s}$
response time, achieving 700-fold improvement compared to the conventional single-frequency output methods. Further, the differential output method inherently compensates for temperature drift, significantly increasing the immunity of device to thermal crosstalk by a factor of 25. A noise equivalent power density resolution of 253 pW/
$\sqrt {\textit {Hz}}$
is achieved.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.