两个安德烈耶夫对量子比特的光子介导长程耦合

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-10-03 DOI:10.1038/s41567-024-02630-w
L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, C. Schönenberger
{"title":"两个安德烈耶夫对量子比特的光子介导长程耦合","authors":"L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, C. Schönenberger","doi":"10.1038/s41567-024-02630-w","DOIUrl":null,"url":null,"abstract":"When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the next bound state. Although coherent manipulation of these so-called Andreev pair qubits has been demonstrated, long-range qubit–qubit coupling, which is necessary for advanced quantum computing architectures, has not yet been achieved. Here, we demonstrate coherent remote coupling between two Andreev pair qubits mediated by a microwave photon in a superconducting cavity coupler. The latter hosts two modes that are engineered to have very different coupling rates to an external port. The strongly coupled mode can be used to perform a fast read-out of each qubit, while we use the weakly coupled mode to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with characteristic avoided crossings. We identify two-qubit states that are entangled over a distance of 6 mm. This work establishes Andreev pair qubits as a compact and scalable approach to developing quantum computers. Qubits formed from Andreev bound states in a Josephson junction could have performance advantages over existing superconducting qubits. Here proof-of-principle experiments demonstrate long-range coupling between Andreev-level qubits.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1793-1797"},"PeriodicalIF":17.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-mediated long-range coupling of two Andreev pair qubits\",\"authors\":\"L. Y. Cheung, R. Haller, A. Kononov, C. Ciaccia, J. H. Ungerer, T. Kanne, J. Nygård, P. Winkel, T. Reisinger, I. M. Pop, A. Baumgartner, C. Schönenberger\",\"doi\":\"10.1038/s41567-024-02630-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the next bound state. Although coherent manipulation of these so-called Andreev pair qubits has been demonstrated, long-range qubit–qubit coupling, which is necessary for advanced quantum computing architectures, has not yet been achieved. Here, we demonstrate coherent remote coupling between two Andreev pair qubits mediated by a microwave photon in a superconducting cavity coupler. The latter hosts two modes that are engineered to have very different coupling rates to an external port. The strongly coupled mode can be used to perform a fast read-out of each qubit, while we use the weakly coupled mode to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with characteristic avoided crossings. We identify two-qubit states that are entangled over a distance of 6 mm. This work establishes Andreev pair qubits as a compact and scalable approach to developing quantum computers. Qubits formed from Andreev bound states in a Josephson junction could have performance advantages over existing superconducting qubits. Here proof-of-principle experiments demonstrate long-range coupling between Andreev-level qubits.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 11\",\"pages\":\"1793-1797\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02630-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02630-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当两个超导体被薄弱环节隔开时,电子及其时间反转伙伴的相位相干反射形成的安德烈耶夫束缚态会携带超电流。由于与下一个束缚态之间可能存在巨大的能量差,与单个高穿透性安德列夫束缚态相关的两个电平可以作为一个量子比特。虽然这些所谓的安德烈夫对量子比特的相干操纵已经得到证实,但先进量子计算架构所必需的远距离量子比特-量子比特耦合尚未实现。在这里,我们展示了由超导腔耦合器中的微波光子介导的两个安德烈夫对量子比特之间的相干远程耦合。超导腔耦合器包含两种模式,它们与外部端口的耦合率截然不同。强耦合模式可用于快速读出每个量子比特,而我们则使用弱耦合模式来调解量子比特之间的耦合。当两个量子比特都被调谐到与后一种模式共振时,我们发现激发光谱具有避免交叉的特征。我们确定了纠缠距离为 6 毫米的双量子比特态。这项工作将安德烈耶夫对量子比特确立为开发量子计算机的一种紧凑、可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photon-mediated long-range coupling of two Andreev pair qubits
When two superconductors are separated by a weak link, a supercurrent is carried by Andreev bound states formed by the phase-coherent reflection of electrons and their time-reversed partners. The two levels associated with a single, highly transmissive Andreev bound state can serve as a qubit due to the potentially large energy difference with the next bound state. Although coherent manipulation of these so-called Andreev pair qubits has been demonstrated, long-range qubit–qubit coupling, which is necessary for advanced quantum computing architectures, has not yet been achieved. Here, we demonstrate coherent remote coupling between two Andreev pair qubits mediated by a microwave photon in a superconducting cavity coupler. The latter hosts two modes that are engineered to have very different coupling rates to an external port. The strongly coupled mode can be used to perform a fast read-out of each qubit, while we use the weakly coupled mode to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with characteristic avoided crossings. We identify two-qubit states that are entangled over a distance of 6 mm. This work establishes Andreev pair qubits as a compact and scalable approach to developing quantum computers. Qubits formed from Andreev bound states in a Josephson junction could have performance advantages over existing superconducting qubits. Here proof-of-principle experiments demonstrate long-range coupling between Andreev-level qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Observation of a finite-energy phase transition in a one-dimensional quantum simulator Precision spectroscopy of the hyperfine components of the 1S–2S transition in antihydrogen Links that build Muddy the baseballs Autonomous cars and the long road ahead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1