双黑洞周围的自相互作用标量暗物质

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2024-10-02 DOI:10.1103/physrevd.110.083011
Josu C. Aurrekoetxea, James Marsden, Katy Clough, Pedro G. Ferreira
{"title":"双黑洞周围的自相互作用标量暗物质","authors":"Josu C. Aurrekoetxea, James Marsden, Katy Clough, Pedro G. Ferreira","doi":"10.1103/physrevd.110.083011","DOIUrl":null,"url":null,"abstract":"Gravitational waves can provide crucial insights about the environments in which black holes live. In this work, we use numerical relativity simulations to study the behavior of self-interacting scalar (wavelike) dark matter clouds accreting onto isolated and binary black holes. We find that repulsive self-interactions smoothen the “spike” of an isolated black hole and saturate the density. Attractive self-interactions enhance the growth and result in more cuspy profiles, but can become unstable and undergo explosions akin to the superradiant bosenova that reduce the local cloud density. We quantify the impact of self-interactions on an equal-mass black hole merger by computing the dephasing of the gravitational-wave signal for a range of couplings. We find that repulsive self-interactions saturate the density of the cloud, thereby reducing the dephasing. For attractive self-interactions, the dephasing may be larger, but if these interactions dominate prior to the merger, the dark matter can undergo bosenova during the inspiral phase, disrupting the cloud and subsequently reducing the dephasing.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-interacting scalar dark matter around binary black holes\",\"authors\":\"Josu C. Aurrekoetxea, James Marsden, Katy Clough, Pedro G. Ferreira\",\"doi\":\"10.1103/physrevd.110.083011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational waves can provide crucial insights about the environments in which black holes live. In this work, we use numerical relativity simulations to study the behavior of self-interacting scalar (wavelike) dark matter clouds accreting onto isolated and binary black holes. We find that repulsive self-interactions smoothen the “spike” of an isolated black hole and saturate the density. Attractive self-interactions enhance the growth and result in more cuspy profiles, but can become unstable and undergo explosions akin to the superradiant bosenova that reduce the local cloud density. We quantify the impact of self-interactions on an equal-mass black hole merger by computing the dephasing of the gravitational-wave signal for a range of couplings. We find that repulsive self-interactions saturate the density of the cloud, thereby reducing the dephasing. For attractive self-interactions, the dephasing may be larger, but if these interactions dominate prior to the merger, the dark matter can undergo bosenova during the inspiral phase, disrupting the cloud and subsequently reducing the dephasing.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.083011\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.083011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

引力波可以提供有关黑洞生存环境的重要信息。在这项工作中,我们利用数值相对论模拟来研究自相互作用标量(波状)暗物质云吸积到孤立黑洞和双黑洞上的行为。我们发现,排斥性自相互作用会平滑孤立黑洞的 "尖峰",并使密度达到饱和。吸引性自相互作用会促进增长,并产生更柔软的轮廓,但也可能变得不稳定,发生类似超辐射波森新星的爆炸,从而降低局部云的密度。我们通过计算一系列耦合的引力波信号的消相,量化了自相互作用对等质量黑洞合并的影响。我们发现,排斥性自相互作用会使云的密度达到饱和,从而降低消相。对于吸引力自相互作用,去相可能会更大,但如果这些相互作用在合并前占主导地位,暗物质就会在吸气阶段发生玻色新星现象,扰乱云,从而降低去相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-interacting scalar dark matter around binary black holes
Gravitational waves can provide crucial insights about the environments in which black holes live. In this work, we use numerical relativity simulations to study the behavior of self-interacting scalar (wavelike) dark matter clouds accreting onto isolated and binary black holes. We find that repulsive self-interactions smoothen the “spike” of an isolated black hole and saturate the density. Attractive self-interactions enhance the growth and result in more cuspy profiles, but can become unstable and undergo explosions akin to the superradiant bosenova that reduce the local cloud density. We quantify the impact of self-interactions on an equal-mass black hole merger by computing the dephasing of the gravitational-wave signal for a range of couplings. We find that repulsive self-interactions saturate the density of the cloud, thereby reducing the dephasing. For attractive self-interactions, the dephasing may be larger, but if these interactions dominate prior to the merger, the dark matter can undergo bosenova during the inspiral phase, disrupting the cloud and subsequently reducing the dephasing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Signatures of bulk neutrinos in the early Universe qT spectrum for Higgs boson production via heavy quark annihilation at N3LL′+aN3LO Branch-cut in the shear-stress response function of massless λφ4 with Boltzmann statistics Improving resbos for the precision needs of the LHC Erratum: Heat kernel expansion for higher order minimal and nonminimal operators [Phys. Rev. D 105, 065013 (2022)]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1