通过电子气体膨胀增强非平衡珀尔帖制冷:蒙特卡罗模拟研究

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-09-28 DOI:10.1016/j.mtphys.2024.101561
Mona Zebarjadi , Farjana Ferdous Tonni , Kazuaki Yazawa , Ali Shakouri
{"title":"通过电子气体膨胀增强非平衡珀尔帖制冷:蒙特卡罗模拟研究","authors":"Mona Zebarjadi ,&nbsp;Farjana Ferdous Tonni ,&nbsp;Kazuaki Yazawa ,&nbsp;Ali Shakouri","doi":"10.1016/j.mtphys.2024.101561","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate enhanced Peltier cooling at the nanoscale using geometrical constriction. This nozzle structure leads to electron expansion under an applied bias, which in turn results in additional cooling. This extra cooling enhances the overall Peltier effect when the electrons are out of equilibrium with the lattice. An ensemble Monte Carlo simulation is used to demonstrate the non-equilibrium expansion of an electron gas using nanoscale trapezoidal geometric confinement. The proposed device operates under steady-state conditions, providing enhanced cooling compared to a one-dimensional flat geometry. We observe a five-fold increase in both the maximum cooling temperature and cooling power density, reaching more than 5 kW/cm<sup>2</sup>, when comparing the trapezoidal geometry to the regular flat geometry.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced non-equilibrium Peltier cooling through electron gas expansion: A Monte Carlo simulation study\",\"authors\":\"Mona Zebarjadi ,&nbsp;Farjana Ferdous Tonni ,&nbsp;Kazuaki Yazawa ,&nbsp;Ali Shakouri\",\"doi\":\"10.1016/j.mtphys.2024.101561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrate enhanced Peltier cooling at the nanoscale using geometrical constriction. This nozzle structure leads to electron expansion under an applied bias, which in turn results in additional cooling. This extra cooling enhances the overall Peltier effect when the electrons are out of equilibrium with the lattice. An ensemble Monte Carlo simulation is used to demonstrate the non-equilibrium expansion of an electron gas using nanoscale trapezoidal geometric confinement. The proposed device operates under steady-state conditions, providing enhanced cooling compared to a one-dimensional flat geometry. We observe a five-fold increase in both the maximum cooling temperature and cooling power density, reaching more than 5 kW/cm<sup>2</sup>, when comparing the trapezoidal geometry to the regular flat geometry.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324002372\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002372","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了利用几何收缩在纳米尺度上增强的珀尔帖冷却。这种喷嘴结构导致电子在外加偏压下膨胀,进而产生额外冷却。当电子与晶格失去平衡时,这种额外的冷却会增强整体的珀尔帖效应。利用集合蒙特卡洛模拟演示了使用纳米级梯形几何约束的电子气体的非平衡膨胀。与一维平面几何相比,所提出的装置在稳态条件下运行,提供了更强的冷却能力。我们观察到,梯形几何与普通平面几何相比,最大冷却温度和冷却功率密度都提高了五倍,达到 5 kW/cm2 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced non-equilibrium Peltier cooling through electron gas expansion: A Monte Carlo simulation study
We demonstrate enhanced Peltier cooling at the nanoscale using geometrical constriction. This nozzle structure leads to electron expansion under an applied bias, which in turn results in additional cooling. This extra cooling enhances the overall Peltier effect when the electrons are out of equilibrium with the lattice. An ensemble Monte Carlo simulation is used to demonstrate the non-equilibrium expansion of an electron gas using nanoscale trapezoidal geometric confinement. The proposed device operates under steady-state conditions, providing enhanced cooling compared to a one-dimensional flat geometry. We observe a five-fold increase in both the maximum cooling temperature and cooling power density, reaching more than 5 kW/cm2, when comparing the trapezoidal geometry to the regular flat geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Grain recovery facilitated low-angle grain boundaries and texture for high-performance BiSbTe alloys Superconducting memory and trapped magnetic flux in ternary lanthanum polyhydrides NiFe pyrophosphate enables long-term alkaline seawater oxidation at an ampere-level current density Impact of an annealing atmosphere on band-alignment of a plasma-enhanced atomic layer deposition-grown Ga2O3/SiC heterojunction Highly Stretchable, Low-Hysteresis, and Antifreeze Hydrogel for Low-Grade Thermal Energy Harvesting in Ionic Thermoelectric Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1