光聚合过程中的半导体光催化剂:机理认识、最新进展和未来展望

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2024-09-30 DOI:10.1016/j.progpolymsci.2024.101891
Kasidid Yaemsunthorn , Wojciech Macyk , Joanna Ortyl
{"title":"光聚合过程中的半导体光催化剂:机理认识、最新进展和未来展望","authors":"Kasidid Yaemsunthorn ,&nbsp;Wojciech Macyk ,&nbsp;Joanna Ortyl","doi":"10.1016/j.progpolymsci.2024.101891","DOIUrl":null,"url":null,"abstract":"<div><div>This review discusses the fundamental principles of photocatalysis and essential properties of semiconductor photocatalysts (PCs) in the context of photo-induced and photo-mediated polymerization applications. This encompasses the distinct mechanisms of radical photopolymerization, including direct monomer activation, Free-Radical Polymerization (FRP), and advanced Reversible-Deactivation Radical Polymerization (RDRP) techniques such as Atom Transfer Radical Polymerization (ATRP) and Reversible Addition−Fragmentation Chain Transfer (RAFT). Emphasis is placed on the significant roles played by the photocatalyst and the specific type of reaction being employed. The recent development and integration of upconversion materials is also included. The scope of this exploration encompasses a comprehensive survey of diverse photocatalysts and reaction conditions, spanning historical milestones and recent advancements. In addition, this review explores potential applications and offers insights into future developments. The overarching goal is to empower readers, provide a deeper understanding of semiconductor photocatalyst-based photopolymerization functions, and serve as a catalyst for further research and development in this dynamic field.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101891"},"PeriodicalIF":26.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor photocatalysts in photopolymerization processes: Mechanistic insights, recent advances, and future prospects\",\"authors\":\"Kasidid Yaemsunthorn ,&nbsp;Wojciech Macyk ,&nbsp;Joanna Ortyl\",\"doi\":\"10.1016/j.progpolymsci.2024.101891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review discusses the fundamental principles of photocatalysis and essential properties of semiconductor photocatalysts (PCs) in the context of photo-induced and photo-mediated polymerization applications. This encompasses the distinct mechanisms of radical photopolymerization, including direct monomer activation, Free-Radical Polymerization (FRP), and advanced Reversible-Deactivation Radical Polymerization (RDRP) techniques such as Atom Transfer Radical Polymerization (ATRP) and Reversible Addition−Fragmentation Chain Transfer (RAFT). Emphasis is placed on the significant roles played by the photocatalyst and the specific type of reaction being employed. The recent development and integration of upconversion materials is also included. The scope of this exploration encompasses a comprehensive survey of diverse photocatalysts and reaction conditions, spanning historical milestones and recent advancements. In addition, this review explores potential applications and offers insights into future developments. The overarching goal is to empower readers, provide a deeper understanding of semiconductor photocatalyst-based photopolymerization functions, and serve as a catalyst for further research and development in this dynamic field.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"158 \",\"pages\":\"Article 101891\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024001084\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024001084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本综述结合光诱导和光介导聚合应用,讨论了光催化的基本原理和半导体光催化剂(PC)的基本特性。这包括自由基光聚合的不同机制,包括直接单体活化、自由基聚合(FRP)和先进的可逆失活自由基聚合(RDRP)技术,如原子转移自由基聚合(ATRP)和可逆加成-碎片链转移(RAFT)。重点是光催化剂和所采用的特定反应类型所发挥的重要作用。还包括上转换材料的最新发展和整合。探讨范围包括对各种光催化剂和反应条件的全面调查,横跨历史里程碑和最新进展。此外,本综述还探讨了潜在的应用,并对未来的发展提出了见解。本书的总体目标是增强读者的能力,加深对基于半导体光催化剂的光聚合功能的理解,并为这一充满活力的领域的进一步研究和发展起到催化剂的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semiconductor photocatalysts in photopolymerization processes: Mechanistic insights, recent advances, and future prospects
This review discusses the fundamental principles of photocatalysis and essential properties of semiconductor photocatalysts (PCs) in the context of photo-induced and photo-mediated polymerization applications. This encompasses the distinct mechanisms of radical photopolymerization, including direct monomer activation, Free-Radical Polymerization (FRP), and advanced Reversible-Deactivation Radical Polymerization (RDRP) techniques such as Atom Transfer Radical Polymerization (ATRP) and Reversible Addition−Fragmentation Chain Transfer (RAFT). Emphasis is placed on the significant roles played by the photocatalyst and the specific type of reaction being employed. The recent development and integration of upconversion materials is also included. The scope of this exploration encompasses a comprehensive survey of diverse photocatalysts and reaction conditions, spanning historical milestones and recent advancements. In addition, this review explores potential applications and offers insights into future developments. The overarching goal is to empower readers, provide a deeper understanding of semiconductor photocatalyst-based photopolymerization functions, and serve as a catalyst for further research and development in this dynamic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1