BiVO4 光阳极中的铋空位诱导晶格应变,促进水氧化的电荷分离

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-03 DOI:10.1002/aenm.202403835
Boyan Liu, Xin Wang, Yingjuan Zhang, Kang Wan, Liangcheng Xu, Siqing Ma, Ruoting Zhao, Songcan Wang, Wei Huang
{"title":"BiVO4 光阳极中的铋空位诱导晶格应变,促进水氧化的电荷分离","authors":"Boyan Liu, Xin Wang, Yingjuan Zhang, Kang Wan, Liangcheng Xu, Siqing Ma, Ruoting Zhao, Songcan Wang, Wei Huang","doi":"10.1002/aenm.202403835","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production. However, severe charge recombination in the photoelectrode materials is one of the key obstacles to achieving high performance. Herein, a BiVO₄ photoanode with lattice strain (Str-BVO) is constructed by generating Bi vacancies to promote charge separation in the bulk. The optimized Str-BVO photoanode achieves a photocurrent density of 6.20 mA cm⁻<sup>2</sup> at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, with an impressive charge separation efficiency close to 100%. Systematical experiments and density functional theory reveal that the surface Bi vacancies induced strain causes the distortion of a small number of VO<sub>4</sub> tetrahedra, which increases the antibonding state energy of most normal VO<sub>4</sub> tetrahedra and creates more electronic vacancy states, thereby significantly promoting electron–hole separation. By surface loading with a FeNiO<sub>x</sub> co-catalyst, the photoanode exhibits excellent PEC water-splitting performance and stability.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth Vacancies Induced Lattice Strain in BiVO4 Photoanodes Boosting Charge Separation For Water Oxidation\",\"authors\":\"Boyan Liu, Xin Wang, Yingjuan Zhang, Kang Wan, Liangcheng Xu, Siqing Ma, Ruoting Zhao, Songcan Wang, Wei Huang\",\"doi\":\"10.1002/aenm.202403835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production. However, severe charge recombination in the photoelectrode materials is one of the key obstacles to achieving high performance. Herein, a BiVO₄ photoanode with lattice strain (Str-BVO) is constructed by generating Bi vacancies to promote charge separation in the bulk. The optimized Str-BVO photoanode achieves a photocurrent density of 6.20 mA cm⁻<sup>2</sup> at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, with an impressive charge separation efficiency close to 100%. Systematical experiments and density functional theory reveal that the surface Bi vacancies induced strain causes the distortion of a small number of VO<sub>4</sub> tetrahedra, which increases the antibonding state energy of most normal VO<sub>4</sub> tetrahedra and creates more electronic vacancy states, thereby significantly promoting electron–hole separation. By surface loading with a FeNiO<sub>x</sub> co-catalyst, the photoanode exhibits excellent PEC water-splitting performance and stability.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403835\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403835","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)水分离技术是一种前景广阔的绿色制氢技术。然而,光电极材料中严重的电荷重组是实现高性能的关键障碍之一。在此,我们通过产生铋空位来促进块体中的电荷分离,从而构建了具有晶格应变的BiVO₄光阳极(Str-BVO)。优化后的 Str-BVO 光阳极在 AM 1.5 G 光照下,相对于可逆氢电极,在 1.23 V 电压下的光电流密度达到 6.20 mA cm-2,电荷分离效率接近 100%,令人印象深刻。系统实验和密度泛函理论表明,表面 Bi 空位诱导的应变会导致少量 VO4 四面体变形,从而增加大多数正常 VO4 四面体的反键态能量,产生更多的电子空位态,从而显著促进电子-空穴分离。通过表面负载 FeNiOx 助催化剂,光阳极表现出卓越的 PEC 分水性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bismuth Vacancies Induced Lattice Strain in BiVO4 Photoanodes Boosting Charge Separation For Water Oxidation
Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production. However, severe charge recombination in the photoelectrode materials is one of the key obstacles to achieving high performance. Herein, a BiVO₄ photoanode with lattice strain (Str-BVO) is constructed by generating Bi vacancies to promote charge separation in the bulk. The optimized Str-BVO photoanode achieves a photocurrent density of 6.20 mA cm⁻2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, with an impressive charge separation efficiency close to 100%. Systematical experiments and density functional theory reveal that the surface Bi vacancies induced strain causes the distortion of a small number of VO4 tetrahedra, which increases the antibonding state energy of most normal VO4 tetrahedra and creates more electronic vacancy states, thereby significantly promoting electron–hole separation. By surface loading with a FeNiOx co-catalyst, the photoanode exhibits excellent PEC water-splitting performance and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Bismuth Vacancies Induced Lattice Strain in BiVO4 Photoanodes Boosting Charge Separation For Water Oxidation A Rechargeable Zn–Air Battery with High Energy Efficiency Enabled by a Hydrogen Peroxide Bifunctional Catalyst Solvation Modification and Interfacial Chemistry Regulation Via Amphoteric Amino Acids for Long-Cycle Zinc Batteries Correlating the Photoshunt with Charge-Collection Losses in Organic Solar Cells Ring-Opening Polymerization Reconfigures Polyacrylonitrile Network for Ultra Stable Solid-State Lithium Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1