定向晶体极化调谐块状电荷和单点化学态,实现卓越的氢光电生产。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-04 DOI:10.1002/adma.202411339
Zijian Zhu, Jingcong Hu, Cheng Hu, Yue Lu, Shengqi Chu, Fang Chen, Yihe Zhang, Hongwei Huang
{"title":"定向晶体极化调谐块状电荷和单点化学态,实现卓越的氢光电生产。","authors":"Zijian Zhu, Jingcong Hu, Cheng Hu, Yue Lu, Shengqi Chu, Fang Chen, Yihe Zhang, Hongwei Huang","doi":"10.1002/adma.202411339","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid bulk charge recombination and mediocre surface catalytic sites harshly restrict the photocatalytic activities. Herein, the aforementioned concerns are well addressed by coupling macroscopic spontaneous polarization and atomic-site engineering of CdS single-crystal nanorods for superb H<sub>2</sub> photo-production. The oriented growth of CdS nanorods along the polar axis, vectorially superimposing substantial polar units with orderly arrangement, renders a strong polarization electric field (20.1 times enhancement), which boosts bulk charge separation with an efficiency up to 72.4% (80.4-fold). Remarkably, polarization electric field alters the chemical state of Pt single sites by orderly reducing the binding energy of Pt atom with stepwise polarization enhancement of CdS substrate, which increases the onsite electron density of Pt from 10.232 to 10.261e<sup>-</sup> and *H key intermediates, providing preponderant Volmer-Tafel/Volmer-Heyrovsky reaction pathways with significantly decreased energy barriers for H<sub>2</sub> production. Thus, highly polarized CdS nanorods with atomically dispersed Pt sites perform an outstanding H<sub>2</sub> space-time yield of 118.5 mmol g<sup>-1</sup> h<sup>-1</sup> and apparent quantum efficiency of 57.7% at λ = 420 nm, and a record-high H<sub>2</sub> turnover frequency of 57798.4 h<sup>-1</sup>, being one of the best catalysts for photocatalytic H<sub>2</sub> evolution. This work highlights the function of polarization in manipulating charge separation and catalytic reaction.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production.\",\"authors\":\"Zijian Zhu, Jingcong Hu, Cheng Hu, Yue Lu, Shengqi Chu, Fang Chen, Yihe Zhang, Hongwei Huang\",\"doi\":\"10.1002/adma.202411339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid bulk charge recombination and mediocre surface catalytic sites harshly restrict the photocatalytic activities. Herein, the aforementioned concerns are well addressed by coupling macroscopic spontaneous polarization and atomic-site engineering of CdS single-crystal nanorods for superb H<sub>2</sub> photo-production. The oriented growth of CdS nanorods along the polar axis, vectorially superimposing substantial polar units with orderly arrangement, renders a strong polarization electric field (20.1 times enhancement), which boosts bulk charge separation with an efficiency up to 72.4% (80.4-fold). Remarkably, polarization electric field alters the chemical state of Pt single sites by orderly reducing the binding energy of Pt atom with stepwise polarization enhancement of CdS substrate, which increases the onsite electron density of Pt from 10.232 to 10.261e<sup>-</sup> and *H key intermediates, providing preponderant Volmer-Tafel/Volmer-Heyrovsky reaction pathways with significantly decreased energy barriers for H<sub>2</sub> production. Thus, highly polarized CdS nanorods with atomically dispersed Pt sites perform an outstanding H<sub>2</sub> space-time yield of 118.5 mmol g<sup>-1</sup> h<sup>-1</sup> and apparent quantum efficiency of 57.7% at λ = 420 nm, and a record-high H<sub>2</sub> turnover frequency of 57798.4 h<sup>-1</sup>, being one of the best catalysts for photocatalytic H<sub>2</sub> evolution. This work highlights the function of polarization in manipulating charge separation and catalytic reaction.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202411339\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411339","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

体电荷的快速重组和表面催化位点的平庸严重限制了光催化活性。在这里,通过将 CdS 单晶纳米棒的宏观自发极化和原子位点工程相结合,实现了卓越的 H2 光生成,从而很好地解决了上述问题。沿极轴定向生长的 CdS 纳米棒矢量叠加了大量有序排列的极性单元,产生了强大的极化电场(增强了 20.1 倍),从而促进了体电荷分离,效率高达 72.4%(80.4 倍)。值得注意的是,极化电场通过有序降低铂原子的结合能来改变铂单个位点的化学状态,同时逐步增强 CdS 衬底的极化,从而将铂的原位电子密度从 10.232e 提高到 10.261e- 和 *H 关键中间体,提供了主要的 Volmer-Tafel/Volmer-Heyrovsky 反应途径,显著降低了产生 H2 的能垒。因此,具有原子分散铂位点的高极化 CdS 纳米棒在 λ = 420 纳米波长下的 H2 时空产率达到 118.5 mmol g-1 h-1,表观量子效率达到 57.7%,H2 转化频率达到创纪录的 57798.4 h-1,是光催化 H2 演化的最佳催化剂之一。这项工作凸显了极化在操纵电荷分离和催化反应方面的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production.

Rapid bulk charge recombination and mediocre surface catalytic sites harshly restrict the photocatalytic activities. Herein, the aforementioned concerns are well addressed by coupling macroscopic spontaneous polarization and atomic-site engineering of CdS single-crystal nanorods for superb H2 photo-production. The oriented growth of CdS nanorods along the polar axis, vectorially superimposing substantial polar units with orderly arrangement, renders a strong polarization electric field (20.1 times enhancement), which boosts bulk charge separation with an efficiency up to 72.4% (80.4-fold). Remarkably, polarization electric field alters the chemical state of Pt single sites by orderly reducing the binding energy of Pt atom with stepwise polarization enhancement of CdS substrate, which increases the onsite electron density of Pt from 10.232 to 10.261e- and *H key intermediates, providing preponderant Volmer-Tafel/Volmer-Heyrovsky reaction pathways with significantly decreased energy barriers for H2 production. Thus, highly polarized CdS nanorods with atomically dispersed Pt sites perform an outstanding H2 space-time yield of 118.5 mmol g-1 h-1 and apparent quantum efficiency of 57.7% at λ = 420 nm, and a record-high H2 turnover frequency of 57798.4 h-1, being one of the best catalysts for photocatalytic H2 evolution. This work highlights the function of polarization in manipulating charge separation and catalytic reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cu-Atom Locations in Rocksalt SnTe Thermoelectric Alloy. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. Intertwined Flexoelectricity and Stacking Ferroelectricity in Marginally Twisted hBN Moiré Superlattice. Picometer-Level In Situ Manipulation of Ferroelectric Polarization in Van der Waals layered InSe. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1