Aysan Changizi Kecheklou , Mohammad Reza Afshar Mogaddam , Saeed Mohammad Sorouraddin , Mir Ali Farajzadeh , Ali Akbar Fathi
{"title":"在液相色谱-串联质谱法之前,基于涂在网状物上的共价有机框架从血浆中进行薄膜微萃取阿哌沙班。","authors":"Aysan Changizi Kecheklou , Mohammad Reza Afshar Mogaddam , Saeed Mohammad Sorouraddin , Mir Ali Farajzadeh , Ali Akbar Fathi","doi":"10.1016/j.jchromb.2024.124302","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a new covalent organic framework was synthesized and utilized as a coating in thin film microextraction for the extraction of apixaban from plasma samples. This coating was applied to the mesh modified through immersion in a HF solution. The extracted drug was then analyzed using liquid chromatography-tandem mass spectrometry. By combining the high specific surface area and selectivity of the covalent organic framework, along with integrating the innovative thin film microextraction method and a sensitive analysis system, an efficient analytical approach was achieved. The target analyte was preconcentrated and extracted by immersing of the covalent organic framework-coated mesh as an absorbent into the biological sample. Subsequently, a sonication process was conducted for a specific duration. Following this, the extracted analyte was desorbed using acetonitrile as the elution solvent. The effective parameters of the proposed technique were optimized by using “one-parameter-at-a-time” strategy and the optimal conditions were selected. By integrating the developed method notable achievements were made in the terms of low limits of detection and quantification (0.17 and 0.56 µg/L, respectively), a wide linear range (0.05–250 µg/L), intra- and inter day precisions (with relative standard deviations of ≤14 %), as well as satisfactory extraction recoveries (53 % and 54 % in plasma and deionized water, respectively). Hence, it can be concluded that the introduced technique exhibits high efficiency and reliability when applied to biological samples.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1247 ","pages":"Article 124302"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin film microextraction of apixaban from plasma based on the covalent organic framework coated on a mesh prior to liquid chromatography-tandem mass spectrometry\",\"authors\":\"Aysan Changizi Kecheklou , Mohammad Reza Afshar Mogaddam , Saeed Mohammad Sorouraddin , Mir Ali Farajzadeh , Ali Akbar Fathi\",\"doi\":\"10.1016/j.jchromb.2024.124302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, a new covalent organic framework was synthesized and utilized as a coating in thin film microextraction for the extraction of apixaban from plasma samples. This coating was applied to the mesh modified through immersion in a HF solution. The extracted drug was then analyzed using liquid chromatography-tandem mass spectrometry. By combining the high specific surface area and selectivity of the covalent organic framework, along with integrating the innovative thin film microextraction method and a sensitive analysis system, an efficient analytical approach was achieved. The target analyte was preconcentrated and extracted by immersing of the covalent organic framework-coated mesh as an absorbent into the biological sample. Subsequently, a sonication process was conducted for a specific duration. Following this, the extracted analyte was desorbed using acetonitrile as the elution solvent. The effective parameters of the proposed technique were optimized by using “one-parameter-at-a-time” strategy and the optimal conditions were selected. By integrating the developed method notable achievements were made in the terms of low limits of detection and quantification (0.17 and 0.56 µg/L, respectively), a wide linear range (0.05–250 µg/L), intra- and inter day precisions (with relative standard deviations of ≤14 %), as well as satisfactory extraction recoveries (53 % and 54 % in plasma and deionized water, respectively). Hence, it can be concluded that the introduced technique exhibits high efficiency and reliability when applied to biological samples.</div></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1247 \",\"pages\":\"Article 124302\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023224003118\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224003118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Thin film microextraction of apixaban from plasma based on the covalent organic framework coated on a mesh prior to liquid chromatography-tandem mass spectrometry
In this research, a new covalent organic framework was synthesized and utilized as a coating in thin film microextraction for the extraction of apixaban from plasma samples. This coating was applied to the mesh modified through immersion in a HF solution. The extracted drug was then analyzed using liquid chromatography-tandem mass spectrometry. By combining the high specific surface area and selectivity of the covalent organic framework, along with integrating the innovative thin film microextraction method and a sensitive analysis system, an efficient analytical approach was achieved. The target analyte was preconcentrated and extracted by immersing of the covalent organic framework-coated mesh as an absorbent into the biological sample. Subsequently, a sonication process was conducted for a specific duration. Following this, the extracted analyte was desorbed using acetonitrile as the elution solvent. The effective parameters of the proposed technique were optimized by using “one-parameter-at-a-time” strategy and the optimal conditions were selected. By integrating the developed method notable achievements were made in the terms of low limits of detection and quantification (0.17 and 0.56 µg/L, respectively), a wide linear range (0.05–250 µg/L), intra- and inter day precisions (with relative standard deviations of ≤14 %), as well as satisfactory extraction recoveries (53 % and 54 % in plasma and deionized water, respectively). Hence, it can be concluded that the introduced technique exhibits high efficiency and reliability when applied to biological samples.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.