{"title":"解决难题:让自然杀伤细胞对抗卵巢癌。","authors":"Hannah Noelle Bell, Weiping Zou","doi":"10.1158/2159-8290.CD-24-1012","DOIUrl":null,"url":null,"abstract":"<p><p>Ameliorating the tumor immune microenvironment is a key strategy to improve the therapeutic outcomes of patients with cancer. Sandoval and colleagues demonstrate that iron chelation enhances type I IFN production, promotes NK cell tumor trafficking and activation, and synergizes with chemotherapy drug cisplatin to reduce metastatic ovarian cancer progression in murine models. See related article by Sandoval et al., p. 1901.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 10","pages":"1771-1773"},"PeriodicalIF":29.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ironing Out the Kinks: Arming Natural Killer Cells against Ovarian Cancer.\",\"authors\":\"Hannah Noelle Bell, Weiping Zou\",\"doi\":\"10.1158/2159-8290.CD-24-1012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ameliorating the tumor immune microenvironment is a key strategy to improve the therapeutic outcomes of patients with cancer. Sandoval and colleagues demonstrate that iron chelation enhances type I IFN production, promotes NK cell tumor trafficking and activation, and synergizes with chemotherapy drug cisplatin to reduce metastatic ovarian cancer progression in murine models. See related article by Sandoval et al., p. 1901.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\"14 10\",\"pages\":\"1771-1773\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-24-1012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-1012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
改善肿瘤免疫微环境是提高癌症患者治疗效果的关键策略。Sandoval 及其同事证明,螯合铁能增强 I 型 IFN 的产生,促进 NK 细胞的肿瘤迁移和激活,并与化疗药物顺铂协同作用,从而在小鼠模型中减少转移性卵巢癌的进展。请参阅 Sandoval 等人的相关文章,第 1901 页。
Ironing Out the Kinks: Arming Natural Killer Cells against Ovarian Cancer.
Ameliorating the tumor immune microenvironment is a key strategy to improve the therapeutic outcomes of patients with cancer. Sandoval and colleagues demonstrate that iron chelation enhances type I IFN production, promotes NK cell tumor trafficking and activation, and synergizes with chemotherapy drug cisplatin to reduce metastatic ovarian cancer progression in murine models. See related article by Sandoval et al., p. 1901.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.