Cerliponase alfa 能降低暴露于 fAβ1-42 的小鼠海马神经元的 Aβ 负荷并改变自噬相关通路。

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2024-10-01 DOI:10.1016/j.lfs.2024.123105
{"title":"Cerliponase alfa 能降低暴露于 fAβ1-42 的小鼠海马神经元的 Aβ 负荷并改变自噬相关通路。","authors":"","doi":"10.1016/j.lfs.2024.123105","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ<sub>1–42</sub> (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL<sup>−1</sup>). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ<sub>1–42</sub> induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ1–42\",\"authors\":\"\",\"doi\":\"10.1016/j.lfs.2024.123105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ<sub>1–42</sub> (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL<sup>−1</sup>). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ<sub>1–42</sub> induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524006957\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524006957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

淀粉样蛋白-β(Aβ)在大脑中的胞外聚集在阿尔茨海默病(AD)的发病和进展中起着核心作用。此外,Aβ通过低聚物内化在神经元内积聚也可能在阿尔茨海默病的进展过程中扮演重要角色。自噬是一种溶酶体降解过程,在阿尔茨海默病的早期阶段会出现自噬缺陷。三肽基肽酶-1(TPP1)是一种溶酶体酶,TPP1基因突变与2型晚期婴儿神经细胞类脂膜炎(LINCL)有关。然而,关于TPP1在AD发病机制中的作用的信息还很少;因此,本研究旨在测量TPP1酶的重组类似物cerliponase alfa(CER)(Brineura®)对神经元内Aβ积累的减少作用,并确定自噬途径是否在这种减少中发挥作用。在这项研究中,fAβ1-42(全长 Aβ 的毒性片段)暴露诱导内源性 Aβ 积累,小鼠海马神经元细胞(HT-22)用 CER(人重组 rhTPP1 1 mg mL-1)处理。用 Western 印迹法评估了可溶性 Aβ、TPP1 和参与自噬的蛋白质,包括哺乳动物雷帕霉素靶蛋白(p-mTOR/mTOR)、p62/sequestosome-1(p62/SQSTM1)和微管相关蛋白 1 A/1B-light chain 3(LC3)。还使用 RT-PCR 对 sirtuin-1、beclin-1 和 Atg5 基因进行了研究。通过免疫细胞化学观察了 Aβ 和 TPP1 的定位。CER 通过诱导 TPP1 表达并将原 TPP1 转化为成熟形式,减少了 HT-22 细胞中的 Aβ 负荷。此外,暴露于 CER 和 fAβ1-42 会诱导 HT-22 细胞中的自噬调节/相关通路,而单独暴露于 CER 会增加 sirtuin-1 的活性。根据目前的研究结果,我们认为用酶替代疗法增强TPP1可能是治疗AD的一种潜在疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ1–42
Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ1–42 (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL−1). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ1–42 induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury Schwann cell autotransplantation for the treatment of peripheral nerve injury Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming Zinc pyrithione ameliorates colitis in mice by interacting on intestinal epithelial TRPA1 and TRPV4 channels Navigating therapeutic prospects by modulating autophagy in colorectal cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1