{"title":"通过促进细胞凋亡和抑制细胞周期,将异丙酚重新用于乳腺癌治疗。","authors":"Peng Sun, Hanqing Huang, Jian-Chao Ma, Binyang Feng, Yiqing Zhang, Genggeng Qin, Weian Zeng, Zhong-Kai Cui","doi":"10.3892/or.2024.8814","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most prevalent cancer among women worldwide, characterized by a high mortality rate and propensity for metastasis. Although surgery is the standard treatment for breast cancer, there is still no effective method to inhibit tumor metastasis and improve the prognosis of patients with breast cancer after surgery. Propofol, one of the most widely used intravenous anesthetics in surgery, has exhibited a positive association with improved survival outcomes in patients with breast cancer post‑surgery. However, the underlying molecular mechanism remains to be elucidated. The present study revealed that triple negative breast cancer cells, MDA‑MB‑231 and 4T1, exposed to propofol exhibited a significant decrease in cell viability. Notably, propofol exhibited minimal cytotoxic effects on HUVECs under the same conditions. Furthermore, propofol significantly inhibited the migration and invasion ability of MDA‑MB‑231 and 4T1 cells. Propofol promoted apoptosis in 4T1 cells through upregulation of Bax and cleaved caspase 3, while downregulating B‑cell lymphoma‑extra large. Concomitantly, propofol induced cell cycle arrest of 4T1 cells by downregulating cyclin E2 and phosphorylated cell division cycle 6. Furthermore, propofol exhibited excellent anticancer efficacy in a 4T1 breast cancer allograft mouse model. The present study sheds light on the potential of propofol as an old medicine with a novel use for breast cancer treatment.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Repurposing propofol for breast cancer therapy through promoting apoptosis and arresting cell cycle.\",\"authors\":\"Peng Sun, Hanqing Huang, Jian-Chao Ma, Binyang Feng, Yiqing Zhang, Genggeng Qin, Weian Zeng, Zhong-Kai Cui\",\"doi\":\"10.3892/or.2024.8814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is the most prevalent cancer among women worldwide, characterized by a high mortality rate and propensity for metastasis. Although surgery is the standard treatment for breast cancer, there is still no effective method to inhibit tumor metastasis and improve the prognosis of patients with breast cancer after surgery. Propofol, one of the most widely used intravenous anesthetics in surgery, has exhibited a positive association with improved survival outcomes in patients with breast cancer post‑surgery. However, the underlying molecular mechanism remains to be elucidated. The present study revealed that triple negative breast cancer cells, MDA‑MB‑231 and 4T1, exposed to propofol exhibited a significant decrease in cell viability. Notably, propofol exhibited minimal cytotoxic effects on HUVECs under the same conditions. Furthermore, propofol significantly inhibited the migration and invasion ability of MDA‑MB‑231 and 4T1 cells. Propofol promoted apoptosis in 4T1 cells through upregulation of Bax and cleaved caspase 3, while downregulating B‑cell lymphoma‑extra large. Concomitantly, propofol induced cell cycle arrest of 4T1 cells by downregulating cyclin E2 and phosphorylated cell division cycle 6. Furthermore, propofol exhibited excellent anticancer efficacy in a 4T1 breast cancer allograft mouse model. The present study sheds light on the potential of propofol as an old medicine with a novel use for breast cancer treatment.</p>\",\"PeriodicalId\":19527,\"journal\":{\"name\":\"Oncology reports\",\"volume\":\"52 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/or.2024.8814\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2024.8814","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Repurposing propofol for breast cancer therapy through promoting apoptosis and arresting cell cycle.
Breast cancer is the most prevalent cancer among women worldwide, characterized by a high mortality rate and propensity for metastasis. Although surgery is the standard treatment for breast cancer, there is still no effective method to inhibit tumor metastasis and improve the prognosis of patients with breast cancer after surgery. Propofol, one of the most widely used intravenous anesthetics in surgery, has exhibited a positive association with improved survival outcomes in patients with breast cancer post‑surgery. However, the underlying molecular mechanism remains to be elucidated. The present study revealed that triple negative breast cancer cells, MDA‑MB‑231 and 4T1, exposed to propofol exhibited a significant decrease in cell viability. Notably, propofol exhibited minimal cytotoxic effects on HUVECs under the same conditions. Furthermore, propofol significantly inhibited the migration and invasion ability of MDA‑MB‑231 and 4T1 cells. Propofol promoted apoptosis in 4T1 cells through upregulation of Bax and cleaved caspase 3, while downregulating B‑cell lymphoma‑extra large. Concomitantly, propofol induced cell cycle arrest of 4T1 cells by downregulating cyclin E2 and phosphorylated cell division cycle 6. Furthermore, propofol exhibited excellent anticancer efficacy in a 4T1 breast cancer allograft mouse model. The present study sheds light on the potential of propofol as an old medicine with a novel use for breast cancer treatment.
期刊介绍:
Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.