利用监督式机器学习,根据上颌测量结果预测上颌犬齿嵌塞风险。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-04 DOI:10.1111/ocr.12863
Cristiano Miranda de Araujo, Pedro Felipe de Jesus Freitas, Aline Xavier Ferraz, Patricia Kern Di Scala Andreis, Michelle Nascimento Meger, Flares Baratto-Filho, Cesar Augusto Rodenbusch Poletto, Erika Calvano Küchler, Elisa Souza Camargo, Angela Graciela Deliga Schroder
{"title":"利用监督式机器学习,根据上颌测量结果预测上颌犬齿嵌塞风险。","authors":"Cristiano Miranda de Araujo, Pedro Felipe de Jesus Freitas, Aline Xavier Ferraz, Patricia Kern Di Scala Andreis, Michelle Nascimento Meger, Flares Baratto-Filho, Cesar Augusto Rodenbusch Poletto, Erika Calvano Küchler, Elisa Souza Camargo, Angela Graciela Deliga Schroder","doi":"10.1111/ocr.12863","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques.</p><p><strong>Materials and methods: </strong>The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K-Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5-fold cross-validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed.</p><p><strong>Results: </strong>The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74-0.98] for test data to 0.89 [CI95% = 0.86-0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms.</p><p><strong>Conclusion: </strong>The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning.\",\"authors\":\"Cristiano Miranda de Araujo, Pedro Felipe de Jesus Freitas, Aline Xavier Ferraz, Patricia Kern Di Scala Andreis, Michelle Nascimento Meger, Flares Baratto-Filho, Cesar Augusto Rodenbusch Poletto, Erika Calvano Küchler, Elisa Souza Camargo, Angela Graciela Deliga Schroder\",\"doi\":\"10.1111/ocr.12863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques.</p><p><strong>Materials and methods: </strong>The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K-Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5-fold cross-validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed.</p><p><strong>Results: </strong>The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74-0.98] for test data to 0.89 [CI95% = 0.86-0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms.</p><p><strong>Conclusion: </strong>The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ocr.12863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ocr.12863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的通过有监督的机器学习技术,根据上颌骨测量结果预测腭侧上颌犬齿:分析 138 名患者的上颌骨图像,研究通过锥形束计算机断层扫描获得的磨间宽、磨间宽、翼间宽、上颌长度、上颌宽度、鼻腔宽度和鼻孔宽度。预测模型是使用以下机器学习算法建立的:Adaboost 分类器、决策树、梯度提升分类器、K-近邻(KNN)、逻辑回归、多层感知器分类器(MLP)、随机森林分类器和支持向量机(SVM)。每个模型都采用了 5 倍交叉验证方法进行验证。计算了每个模型的曲线下面积(AUC)、准确率、召回率、精确度和 F1 分数等指标,并构建了 ROC 曲线:预测模型包括四个变量(两个牙科测量值和两个骨骼测量值)。结果:预测模型包括四个变量(两个牙齿测量值和两个骨骼测量值),其中翼间宽和鼻孔宽的效应大小最大。梯度提升分类器算法的指标最好,测试数据的 AUC 值为 0.91 [CI95% = 0.74-0.98],交叉验证的 AUC 值为 0.89 [CI95% = 0.86-0.94]。在所有测试算法中,鼻孔宽度变量的重要性最高:结论:通过有监督的机器学习技术使用上颌测量值是一种预测腭侧上颌犬齿的有效方法。在评估的模型中,梯度提升分类器和随机森林分类器的性能指标最好,准确率和AUC值均超过0.8,显示出很强的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning.

Objectives: To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques.

Materials and methods: The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K-Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5-fold cross-validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed.

Results: The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74-0.98] for test data to 0.89 [CI95% = 0.86-0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms.

Conclusion: The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1