RNA 聚合酶 III 转录和调节在缺血性中风中的作用。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Biology Pub Date : 2024-01-01 Epub Date: 2024-10-03 DOI:10.1080/15476286.2024.2409554
Chi Kwan Tsang, X F Steven Zheng
{"title":"RNA 聚合酶 III 转录和调节在缺血性中风中的作用。","authors":"Chi Kwan Tsang, X F Steven Zheng","doi":"10.1080/15476286.2024.2409554","DOIUrl":null,"url":null,"abstract":"<p><p>Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of RNA polymerase III transcription and regulation in ischaemic stroke.\",\"authors\":\"Chi Kwan Tsang, X F Steven Zheng\",\"doi\":\"10.1080/15476286.2024.2409554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\"21 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2024.2409554\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2409554","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺血性中风是葡萄糖和氧气供应中断导致神经细胞死亡和终身残疾的主要原因。依赖 RNA 聚合酶 III(Pol III)的转录在蛋白质合成中发挥着核心作用,而蛋白质合成是大脑神经元正常功能以及在病理条件下存活和恢复所必需的。值得注意的是,Pol III 转录对缺血应激高度敏感,已知缺血应激会迅速关闭 Pol III 的转录活性。然而,人们对 Pol III 在缺血性脑卒中(尤其是急性期和恢复期)中的确切作用仍知之甚少。缺血脑内的微环境在中风后的不同阶段会发生动态变化。新出现的证据强调了 Pol III 转录在中风急性期神经保护和恢复期神经修复中的不同作用。此外,mTOR-MAF1 信号通路是 Pol-III 转录的一个保守调控因子,对该通路的研究揭示了它在加强急性期神经保护和恢复期修复方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of RNA polymerase III transcription and regulation in ischaemic stroke.

Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
期刊最新文献
An orthology-based methodology as a complementary approach to retrieve evolutionarily conserved A-to-I RNA editing sites. A systematic analysis of circRNAs in subnuclear compartments. Silencing LINC00663 inhibits inflammation and angiogenesis through downregulation of NR2F1 via EBF1 in bladder cancer Mistranslating the genetic code with leucine in yeast and mammalian cells The regulatory roles of small nucleolar RNAs within their host locus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1