纳米晶体材料中的晶粒旋转机制:铂薄膜的多尺度观测。

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-10-04 Epub Date: 2024-10-03 DOI:10.1126/science.adk6384
Yuan Tian, Xiaoguo Gong, Mingjie Xu, Caihao Qiu, Ying Han, Yutong Bi, Leonardo Velasco Estrada, Evgeniy Boltynjuk, Horst Hahn, Jian Han, David J Srolovitz, Xiaoqing Pan
{"title":"纳米晶体材料中的晶粒旋转机制:铂薄膜的多尺度观测。","authors":"Yuan Tian, Xiaoguo Gong, Mingjie Xu, Caihao Qiu, Ying Han, Yutong Bi, Leonardo Velasco Estrada, Evgeniy Boltynjuk, Horst Hahn, Jian Han, David J Srolovitz, Xiaoqing Pan","doi":"10.1126/science.adk6384","DOIUrl":null,"url":null,"abstract":"<p><p>Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation-aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain rotation mechanisms in nanocrystalline materials: Multiscale observations in Pt thin films.\",\"authors\":\"Yuan Tian, Xiaoguo Gong, Mingjie Xu, Caihao Qiu, Ying Han, Yutong Bi, Leonardo Velasco Estrada, Evgeniy Boltynjuk, Horst Hahn, Jian Han, David J Srolovitz, Xiaoqing Pan\",\"doi\":\"10.1126/science.adk6384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation-aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.</p>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/science.adk6384\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adk6384","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在纳米晶体材料的晶粒生长、再结晶和塑性变形过程中,通常会观察到近刚体晶粒旋转。尽管进行了数十年的研究,但晶粒旋转的主要机制仍然是个谜。我们提出的直接证据表明,晶粒旋转是通过铂薄膜中沿晶界的断开运动(具有阶跃和位错特征的线缺陷)发生的。最先进的原位四维扫描透射电子显微镜(4D-STEM)观测揭示了晶粒旋转与晶粒生长或收缩之间的统计相关性。正如原位高角度环形暗场 STEM 观察和原子模拟辅助分析所证明的那样,这种相关性源于剪切耦合晶界迁移,这种迁移是通过断开运动发生的。这些发现为纳米晶体材料的结构动力学提供了定量见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grain rotation mechanisms in nanocrystalline materials: Multiscale observations in Pt thin films.

Near-rigid-body grain rotation is commonly observed during grain growth, recrystallization, and plastic deformation in nanocrystalline materials. Despite decades of research, the dominant mechanisms underlying grain rotation remain enigmatic. We present direct evidence that grain rotation occurs through the motion of disconnections (line defects with step and dislocation character) along grain boundaries in platinum thin films. State-of-the-art in situ four-dimensional scanning transmission electron microscopy (4D-STEM) observations reveal the statistical correlation between grain rotation and grain growth or shrinkage. This correlation arises from shear-coupled grain boundary migration, which occurs through the motion of disconnections, as demonstrated by in situ high-angle annular dark-field STEM observations and the atomistic simulation-aided analysis. These findings provide quantitative insights into the structural dynamics of nanocrystalline materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
De novo gene synthesis by an antiviral reverse transcriptase. Tricking phages with a reverse move. Nr5a2 is dispensable for zygotic genome activation but essential for morula development. A bird's-eye view of avian extinctions. A cautious approach to subsidies for environmental sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1