利用激光诱导的光学扭矩实现 Mn2Au 的超快反铁磁切换

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-10-03 DOI:10.1038/s41524-024-01416-1
Jackson L. Ross, Paul-Iulian Gavriloaea, Frank Freimuth, Theodoros Adamantopoulos, Yuriy Mokrousov, Richard F. L. Evans, Roy Chantrell, Rubén M. Otxoa, Oksana Chubykalo-Fesenko
{"title":"利用激光诱导的光学扭矩实现 Mn2Au 的超快反铁磁切换","authors":"Jackson L. Ross, Paul-Iulian Gavriloaea, Frank Freimuth, Theodoros Adamantopoulos, Yuriy Mokrousov, Richard F. L. Evans, Roy Chantrell, Rubén M. Otxoa, Oksana Chubykalo-Fesenko","doi":"10.1038/s41524-024-01416-1","DOIUrl":null,"url":null,"abstract":"<p>Ultrafast manipulation of the Néel vector in metallic antiferromagnets most commonly occurs by generation of spin-orbit (SOT) or spin-transfer (STT) torques. Here, we predict another possibility for antiferromagnetic domain switching by using novel laser optical torques (LOTs). We present results of atomistic spin dynamics simulations from the application of LOTs for all-optical switching of the Néel vector in the antiferromagnet Mn<sub>2</sub>Au. The driving mechanism takes advantage of the sizeable exchange enhancement, characteristic of antiferromagnetic dynamics, allowing for picosecond 90 and 180-degree precessional toggle switching of the Néel vector with laser fluences on the order of mJ/cm<sup>2</sup>. A special symmetry of these novel torques greatly minimises the over-shooting effect common to precessional spin switching by SOT and STT methods. We demonstrate the opportunity for LOTs to produce deterministic, non-toggle switching of single antiferromagnetic domains. Lastly, we show that even with sizeable ultrafast heating by laser in metallic systems, there exist a large interval of laser parameters where the LOT-assisted toggle and preferential switchings in magnetic grains have probabilities close to one. The proposed protocol could be used on its own for all-optical control of antiferromagnets for computing or memory storage, or in combination with other switching methods to lower energy barriers and/or to prevent over-shooting of the Néel vector.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"140 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast antiferromagnetic switching of Mn2Au with laser-induced optical torques\",\"authors\":\"Jackson L. Ross, Paul-Iulian Gavriloaea, Frank Freimuth, Theodoros Adamantopoulos, Yuriy Mokrousov, Richard F. L. Evans, Roy Chantrell, Rubén M. Otxoa, Oksana Chubykalo-Fesenko\",\"doi\":\"10.1038/s41524-024-01416-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultrafast manipulation of the Néel vector in metallic antiferromagnets most commonly occurs by generation of spin-orbit (SOT) or spin-transfer (STT) torques. Here, we predict another possibility for antiferromagnetic domain switching by using novel laser optical torques (LOTs). We present results of atomistic spin dynamics simulations from the application of LOTs for all-optical switching of the Néel vector in the antiferromagnet Mn<sub>2</sub>Au. The driving mechanism takes advantage of the sizeable exchange enhancement, characteristic of antiferromagnetic dynamics, allowing for picosecond 90 and 180-degree precessional toggle switching of the Néel vector with laser fluences on the order of mJ/cm<sup>2</sup>. A special symmetry of these novel torques greatly minimises the over-shooting effect common to precessional spin switching by SOT and STT methods. We demonstrate the opportunity for LOTs to produce deterministic, non-toggle switching of single antiferromagnetic domains. Lastly, we show that even with sizeable ultrafast heating by laser in metallic systems, there exist a large interval of laser parameters where the LOT-assisted toggle and preferential switchings in magnetic grains have probabilities close to one. The proposed protocol could be used on its own for all-optical control of antiferromagnets for computing or memory storage, or in combination with other switching methods to lower energy barriers and/or to prevent over-shooting of the Néel vector.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01416-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01416-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超快操纵金属反铁磁体中的奈尔矢量最常见的方法是产生自旋轨道(SOT)或自旋转移(STT)扭矩。在这里,我们预测了利用新型激光光力矩 (LOT) 进行反铁磁畴切换的另一种可能性。我们展示了应用 LOTs 进行反铁磁体 Mn2Au 中 Néel 向量全光切换的原子自旋动力学模拟结果。其驱动机制利用了反铁磁动力学所特有的可观交换增强,从而可以在毫焦耳/平方厘米数量级的激光通量下实现皮秒级 90 度和 180 度的奈尔矢量前旋切换。这些新型转矩的特殊对称性大大降低了 SOT 和 STT 方法进行前旋切换时常见的过冲效应。我们展示了 LOTs 产生单个反铁磁畴的确定性、非拨动开关的机会。最后,我们证明了即使在金属系统中使用激光进行相当大的超快加热,也存在一个很大的激光参数区间,在这个区间内,LOT 辅助的磁粒拨动和优先开关的概率接近于 1。建议的协议可单独用于计算或内存存储反铁磁体的全光控制,或与其他开关方法结合使用,以降低能垒和/或防止奈尔矢量的过度射击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrafast antiferromagnetic switching of Mn2Au with laser-induced optical torques

Ultrafast manipulation of the Néel vector in metallic antiferromagnets most commonly occurs by generation of spin-orbit (SOT) or spin-transfer (STT) torques. Here, we predict another possibility for antiferromagnetic domain switching by using novel laser optical torques (LOTs). We present results of atomistic spin dynamics simulations from the application of LOTs for all-optical switching of the Néel vector in the antiferromagnet Mn2Au. The driving mechanism takes advantage of the sizeable exchange enhancement, characteristic of antiferromagnetic dynamics, allowing for picosecond 90 and 180-degree precessional toggle switching of the Néel vector with laser fluences on the order of mJ/cm2. A special symmetry of these novel torques greatly minimises the over-shooting effect common to precessional spin switching by SOT and STT methods. We demonstrate the opportunity for LOTs to produce deterministic, non-toggle switching of single antiferromagnetic domains. Lastly, we show that even with sizeable ultrafast heating by laser in metallic systems, there exist a large interval of laser parameters where the LOT-assisted toggle and preferential switchings in magnetic grains have probabilities close to one. The proposed protocol could be used on its own for all-optical control of antiferromagnets for computing or memory storage, or in combination with other switching methods to lower energy barriers and/or to prevent over-shooting of the Néel vector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1