采用数值算法优化坎普曼-瓦格纳降水数值(KWN)模型中的参数

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-10-03 DOI:10.1038/s41524-024-01415-2
Taiwu Yu, Adam Hope, Paul Mason
{"title":"采用数值算法优化坎普曼-瓦格纳降水数值(KWN)模型中的参数","authors":"Taiwu Yu, Adam Hope, Paul Mason","doi":"10.1038/s41524-024-01415-2","DOIUrl":null,"url":null,"abstract":"<p>The Kampmann–Wagner Numerical (KWN) model of precipitation is a powerful tool to simulate the precipitation of the second phase considering the nucleation, growth, and coarsening. Some quantities such as interfacial energy and nucleation site number density are required to accomplish the simulation. Practically, those quantities are hard to measure in the experiment directly, and the derivation of those quantities through modeling can also be costly. In this work, we hereby adopt the minimization algorithm implemented in the open-source Scipy Python package to derive that important information in terms of very limited experimental data. The convergence and robustness of different algorithms are discussed. Among those algorithms, the Nelder–Mead and Powell algorithms are successfully applied to optimize multiple parameters during KWN modeling. This work will shed light on the design of experiments/processes and facilitate integrated computational materials engineering (ICME).</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing numerical algorithms to optimize the parameters in Kampmann–Wagner Numerical (KWN) precipitation models\",\"authors\":\"Taiwu Yu, Adam Hope, Paul Mason\",\"doi\":\"10.1038/s41524-024-01415-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Kampmann–Wagner Numerical (KWN) model of precipitation is a powerful tool to simulate the precipitation of the second phase considering the nucleation, growth, and coarsening. Some quantities such as interfacial energy and nucleation site number density are required to accomplish the simulation. Practically, those quantities are hard to measure in the experiment directly, and the derivation of those quantities through modeling can also be costly. In this work, we hereby adopt the minimization algorithm implemented in the open-source Scipy Python package to derive that important information in terms of very limited experimental data. The convergence and robustness of different algorithms are discussed. Among those algorithms, the Nelder–Mead and Powell algorithms are successfully applied to optimize multiple parameters during KWN modeling. This work will shed light on the design of experiments/processes and facilitate integrated computational materials engineering (ICME).</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01415-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01415-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

坎普曼-瓦格纳沉淀数值(KWN)模型是一种功能强大的工具,用于模拟考虑成核、生长和粗化的第二相沉淀。完成模拟需要一些量,如界面能和成核点数量密度。实际上,这些量很难在实验中直接测量,而且通过建模推导这些量的成本也很高。在这项工作中,我们采用开源 Scipy Python 软件包中实现的最小化算法,从非常有限的实验数据中推导出这些重要信息。我们讨论了不同算法的收敛性和鲁棒性。在这些算法中,Nelder-Mead 算法和 Powell 算法被成功应用于 KWN 建模过程中的多参数优化。这项工作将为实验/流程设计提供启示,并促进综合计算材料工程(ICME)的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing numerical algorithms to optimize the parameters in Kampmann–Wagner Numerical (KWN) precipitation models

The Kampmann–Wagner Numerical (KWN) model of precipitation is a powerful tool to simulate the precipitation of the second phase considering the nucleation, growth, and coarsening. Some quantities such as interfacial energy and nucleation site number density are required to accomplish the simulation. Practically, those quantities are hard to measure in the experiment directly, and the derivation of those quantities through modeling can also be costly. In this work, we hereby adopt the minimization algorithm implemented in the open-source Scipy Python package to derive that important information in terms of very limited experimental data. The convergence and robustness of different algorithms are discussed. Among those algorithms, the Nelder–Mead and Powell algorithms are successfully applied to optimize multiple parameters during KWN modeling. This work will shed light on the design of experiments/processes and facilitate integrated computational materials engineering (ICME).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Deep learning potential model of displacement damage in hafnium oxide ferroelectric films Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1