凝胶中原子级精确红色发射铜纳米团簇的长期稳定性及其作为潜在催化剂和荧光墨水的用途

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-10-04 DOI:10.1021/acs.langmuir.4c03210
Biplab Mondal, Biswanath Hansda, Tanushree Mondal, Poulami Pal, Kingshuk Basu, Arindam Banerjee
{"title":"凝胶中原子级精确红色发射铜纳米团簇的长期稳定性及其作为潜在催化剂和荧光墨水的用途","authors":"Biplab Mondal, Biswanath Hansda, Tanushree Mondal, Poulami Pal, Kingshuk Basu, Arindam Banerjee","doi":"10.1021/acs.langmuir.4c03210","DOIUrl":null,"url":null,"abstract":"Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu<sub>8</sub>-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH<sub>3</sub>COO)<sub>2</sub>·H<sub>2</sub>O) has been used as a copper precursor, and <span>l</span>-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Stability of Atomically Precise Red Emissive Copper Nanoclusters within the Gel and Their Use As a Potential Catalyst and Fluorescent Ink\",\"authors\":\"Biplab Mondal, Biswanath Hansda, Tanushree Mondal, Poulami Pal, Kingshuk Basu, Arindam Banerjee\",\"doi\":\"10.1021/acs.langmuir.4c03210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu<sub>8</sub>-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH<sub>3</sub>COO)<sub>2</sub>·H<sub>2</sub>O) has been used as a copper precursor, and <span>l</span>-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03210\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03210","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,一种含有天然氨基酸残基的双亲型水凝胶(含5% DMF)已被用于制备和稳定红色发光的铜氧化物数月之久。虽然尝试过不同的方法,但含双亲和 4-巯基苯甲酸(4-MBA)的水凝胶被认为是稳定这种新铜簇的基本介质。通过 MALDI-TOF MS 分析发现,这是一个由三个 4-MBA 配体稳定的 8 原子铜簇。一水醋酸铜(Cu(CH3COO)2-H2O)被用作铜前体,l-抗坏血酸被用作还原剂。FEG-TEM 分析表明,铜簇的平均尺寸为 2.83 nm。有趣的是,这些团簇可用作荧光墨水,在激发波长为 365 纳米的紫外灯下,固态荧光墨水清晰可见。因此,我们设想将这些铜核团块用于防伪。荧光光谱分析显示,这些铜簇的激发波长为 420 纳米,发射波长为 620 纳米。据我们所知,这是首个以水凝胶为模板制作铜簇并使其稳定数月的实例。此外,这些 CuNCs 还可用作催化剂,在水介质中将硝基衍生物还原成胺衍生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long Stability of Atomically Precise Red Emissive Copper Nanoclusters within the Gel and Their Use As a Potential Catalyst and Fluorescent Ink
Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu8-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH3COO)2·H2O) has been used as a copper precursor, and l-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution. Selective SERS Sensing of R6G Molecules Using MoS2 Nanoflowers under Pressure. Synthesis and Fabrication of Metal Cation Intercalation in Multilayered Ti3C2Tx Composite CNF Electrode for Asymmetric Coin Cell Supercapacitors. Unveiling the Electrostatically Driven Collapsing and Relaxation of Polyelectrolyte-Colloid Complexes: A Tunable Pathway to Colloidal Assembly. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1