{"title":"芳基炔酸盐的光催化硅烷化:硅烷化香豆素的合成","authors":"Ravikumar Ladumor, Sourav Samanta, Sermadurai Selvakumar","doi":"10.1002/adsc.202401007","DOIUrl":null,"url":null,"abstract":"Herein, we reported the photocatalytic synthesis of 3‐silyl coumarins using hydrosilanes as the silyl radical source with aryl alkynoates. Readily prepared N‐aminopyridinium salts act as hydrogen atom transfer reagents for generating silyl radicals under photoredox catalysis. The reaction proceeds through silyl radical addition to alkyne followed by radical cascade cyclization/migration with subsequent oxidation and aromatization to give desired 3‐silyl coumarins in 34% to 89% yield.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"23 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Silylation of Aryl Alkynoates: Synthesis of Silylated Coumarins\",\"authors\":\"Ravikumar Ladumor, Sourav Samanta, Sermadurai Selvakumar\",\"doi\":\"10.1002/adsc.202401007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we reported the photocatalytic synthesis of 3‐silyl coumarins using hydrosilanes as the silyl radical source with aryl alkynoates. Readily prepared N‐aminopyridinium salts act as hydrogen atom transfer reagents for generating silyl radicals under photoredox catalysis. The reaction proceeds through silyl radical addition to alkyne followed by radical cascade cyclization/migration with subsequent oxidation and aromatization to give desired 3‐silyl coumarins in 34% to 89% yield.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202401007\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401007","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Photocatalytic Silylation of Aryl Alkynoates: Synthesis of Silylated Coumarins
Herein, we reported the photocatalytic synthesis of 3‐silyl coumarins using hydrosilanes as the silyl radical source with aryl alkynoates. Readily prepared N‐aminopyridinium salts act as hydrogen atom transfer reagents for generating silyl radicals under photoredox catalysis. The reaction proceeds through silyl radical addition to alkyne followed by radical cascade cyclization/migration with subsequent oxidation and aromatization to give desired 3‐silyl coumarins in 34% to 89% yield.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.