长期低水平接触全氟辛烷磺酸对斑马鱼精子和睾丸产生不利影响的可能机制。

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2024-09-26 DOI:10.1016/j.aquatox.2024.107108
Yuhan Wang , Yu Huo , Afrasyab Khan, Ningna Ma, Weijun Mai
{"title":"长期低水平接触全氟辛烷磺酸对斑马鱼精子和睾丸产生不利影响的可能机制。","authors":"Yuhan Wang ,&nbsp;Yu Huo ,&nbsp;Afrasyab Khan,&nbsp;Ningna Ma,&nbsp;Weijun Mai","doi":"10.1016/j.aquatox.2024.107108","DOIUrl":null,"url":null,"abstract":"<div><div>Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107108"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possible mechanisms for adverse effects on zebrafish sperm and testes associated with low-level chronic PFOA exposure\",\"authors\":\"Yuhan Wang ,&nbsp;Yu Huo ,&nbsp;Afrasyab Khan,&nbsp;Ningna Ma,&nbsp;Weijun Mai\",\"doi\":\"10.1016/j.aquatox.2024.107108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"276 \",\"pages\":\"Article 107108\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002789\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002789","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全氟辛酸(PFOA)广泛用于生产含氟聚合物涂料和聚四氟乙烯,现已成为环境和人体中的一种普遍污染物。本研究利用斑马鱼这一水生模型物种,研究长期低水平接触 PFOA 对生殖系统的影响。实验结果表明,斑马鱼连续60天暴露于414纳克/升或4140纳克/升的全氟辛酸中,会对睾丸组织和精子产生多种不利影响,包括血浆雌二醇和睾酮水平的剂量依赖性变化、各种精子畸形、精子活力和浓度下降、全氟辛酸诱发的氧化应激和睾丸损伤以及凋亡率升高。此外,暴露于 PFOA 的斑马鱼后代的畸形率和死亡率也有所增加。随后对雄性性腺进行的转录分析表明,氧化应激生物过程和免疫炎症信号通路显著激活,生殖生物过程失调。总之,低水平长期接触全氟辛烷磺酸会影响成年人的生殖能力和后代的发育;这些不利影响的机制涉及可能参与全氟辛烷磺酸诱导氧化应激和生殖异常的几种分子通路的改变。所提供的数据可用于评估全氟辛烷磺酸在环境相关浓度下对男性生殖系统的生态毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possible mechanisms for adverse effects on zebrafish sperm and testes associated with low-level chronic PFOA exposure
Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Uptake, removal and trophic transfer of fluorescent polyethylene microplastics by freshwater model organisms: the impact of particle size and food availability Integrated physiological, energy metabolism, and metabonomic responses indicate the stress response in the hepatopancreas of Litopenaeus vannamei to nitrite stress. Adverse effects of glyphosate-based herbicide on hatching rate, morphological alterations, and acetylcholinesterase (AChE) expression in golden apple snail eggs Trophic transfer effects of PS nanoplastics and field-derived nanoplastics in the freshwater clam Corbicula fluminea. Chemical-defensome and whole-transcriptome expression of the silverside fish Basilichthys microlepidotus in response to chronic pollution in the Maipo River basin, Central Chile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1