用于核酸检测的金纳米粒子增强 dCas9 介导的荧光共振能量转移。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2024-10-03 DOI:10.1016/j.talanta.2024.126978
Yao Yang, Shanshan Zhai, Li Zhang, Yuhua Wu, Jun Li, Yunjing Li, Xiaofei Li, Longjiao Zhu, Wentao Xu, Gang Wu, Hongfei Gao
{"title":"用于核酸检测的金纳米粒子增强 dCas9 介导的荧光共振能量转移。","authors":"Yao Yang, Shanshan Zhai, Li Zhang, Yuhua Wu, Jun Li, Yunjing Li, Xiaofei Li, Longjiao Zhu, Wentao Xu, Gang Wu, Hongfei Gao","doi":"10.1016/j.talanta.2024.126978","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies μL<sup>-1</sup>. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gold nanoparticle-enhanced dCas9-mediated fluorescence resonance energy transfer for nucleic acid detection.\",\"authors\":\"Yao Yang, Shanshan Zhai, Li Zhang, Yuhua Wu, Jun Li, Yunjing Li, Xiaofei Li, Longjiao Zhu, Wentao Xu, Gang Wu, Hongfei Gao\",\"doi\":\"10.1016/j.talanta.2024.126978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies μL<sup>-1</sup>. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126978\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126978","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚类规则间隔短回文重复序列(CRISPR)相关的 Cas 蛋白与预扩增相结合,在分子诊断中显示出巨大的潜力。然而,目前基于 CRISPR 的方法需要额外的报告和耗时的过程。本文首次提出了一种金纳米粒子(AuNP)增强 CRISPR/dCas9 介导的荧光共振能量转移(FRET)平台,用于快速、灵敏和特异性地检测核酸。在 Au-CFRET 传感平台中,AuNP 被 dCas9 功能化并用作纳米探针。目标 DNA 用 FAM 标记的引物扩增,然后与 AuNP-dCas9 精确结合。形成的复合物使 AuNP 受体和 FAM 供体之间的距离足够短,从而发生 FRET,导致荧光淬灭。此外,在 Au-CFRET 系统中,AuNPs 还能提高 dCas9 与靶 DNA 的结合效率。研究人员详细分析了影响 FRET 效率的关键因素,包括供体/受体的长度和 AuNPs 的大小。在最佳条件下,Au-CFRET 能确定转基因水稻的 CaMV35S 启动子,最低可达 21 个拷贝 μL-1。此外,Au-CFRET 传感系统与一步提取和重组酶聚合酶扩增相结合,可在室温/体温条件下,在 30 分钟内从取样到得出结果,无需昂贵的设备和专业技术,也无需额外的外源报告物,即可识别真正的植物种子。因此,拟议的传感平台大大简化了系统,缩短了核酸诊断的检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A gold nanoparticle-enhanced dCas9-mediated fluorescence resonance energy transfer for nucleic acid detection.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies μL-1. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Cascade internal electric field dominated carbon nitride decorated with gold nanoparticles as SERS substrate for thiram assay. Fluorescent/colorimetric probe for the detection of Cr(Ⅵ) based on MIL-101(Fe)-NH2 with peroxidase-like activity. Functional DNA-Zn2+ coordination nanospheres for sensitive imaging of 8-oxyguanine DNA glycosylase activity in living cells. Highly sensitive SERS detection of melamine based on 3D Ag@porous silicon photonic crystal. Preparation of monoclonal antibodies recognizing pharmacologically active metabolites of metamizole based on rational hapten design and their application in the detection of animal-derived food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1