使用非负最小二乘法联合测试罕见变异负担分数。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2024-10-03 DOI:10.1016/j.ajhg.2024.08.021
Andrey Ziyatdinov, Joelle Mbatchou, Anthony Marcketta, Joshua Backman, Sheila Gaynor, Yuxin Zou, Tyler Joseph, Benjamin Geraghty, Joseph Herman, Kyoko Watanabe, Arkopravo Ghosh, Jack Kosmicki, Adam Locke, Timothy Thornton, Hyun Min Kang, Manuel Ferreira, Aris Baras, Goncalo Abecasis, Jonathan Marchini
{"title":"使用非负最小二乘法联合测试罕见变异负担分数。","authors":"Andrey Ziyatdinov, Joelle Mbatchou, Anthony Marcketta, Joshua Backman, Sheila Gaynor, Yuxin Zou, Tyler Joseph, Benjamin Geraghty, Joseph Herman, Kyoko Watanabe, Arkopravo Ghosh, Jack Kosmicki, Adam Locke, Timothy Thornton, Hyun Min Kang, Manuel Ferreira, Aris Baras, Goncalo Abecasis, Jonathan Marchini","doi":"10.1016/j.ajhg.2024.08.021","DOIUrl":null,"url":null,"abstract":"<p><p>Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a method called the sparse burden association test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank, showing that SBAT is a valuable additional gene-based test when combined with other existing approaches. This test is implemented in the REGENIE software.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"111 10","pages":"2139-2149"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint testing of rare variant burden scores using non-negative least squares.\",\"authors\":\"Andrey Ziyatdinov, Joelle Mbatchou, Anthony Marcketta, Joshua Backman, Sheila Gaynor, Yuxin Zou, Tyler Joseph, Benjamin Geraghty, Joseph Herman, Kyoko Watanabe, Arkopravo Ghosh, Jack Kosmicki, Adam Locke, Timothy Thornton, Hyun Min Kang, Manuel Ferreira, Aris Baras, Goncalo Abecasis, Jonathan Marchini\",\"doi\":\"10.1016/j.ajhg.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a method called the sparse burden association test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank, showing that SBAT is a valuable additional gene-based test when combined with other existing approaches. This test is implemented in the REGENIE software.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\"111 10\",\"pages\":\"2139-2149\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.08.021\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.08.021","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基于基因的负荷测试是一种流行且强大的外显子关联研究分析方法。这些方法将一个基因内的变异组合成一个单一的负荷得分,然后对其进行关联测试。通常情况下,在一系列注释类别和频率分段中计算和测试一系列负荷得分。这些测试之间的相关性会使多重测试校正复杂化,并妨碍对结果的解释。我们引入了一种名为 "稀疏负荷关联检验(SBAT)"的方法,在因果负荷分数作用于相同效应方向的假设下,对联合负荷分数集进行检验。该方法可同时评估模型拟合的显著性,并选择最能解释关联的一组负担分数。通过模拟数据,我们证明该方法校准良好,并强调了该测试优于现有基于基因的测试的情况。我们将该方法应用于英国生物库中的 73 个定量性状,结果表明 SBAT 与其他现有方法结合使用时,是一种有价值的附加基因检测方法。该检验方法已在 REGENIE 软件中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint testing of rare variant burden scores using non-negative least squares.

Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a method called the sparse burden association test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank, showing that SBAT is a valuable additional gene-based test when combined with other existing approaches. This test is implemented in the REGENIE software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
The PRIMED Consortium: Reducing disparities in polygenic risk assessment. Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Toward trustable use of machine learning models of variant effects in the clinic. Allele frequency impacts the cross-ancestry portability of gene expression prediction in lymphoblastoid cell lines. Inherited infertility: Mapping loci associated with impaired female reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1