南大洋浮游植物繁殖期间微生物痕量金属转运体的季节动态。

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-10-04 DOI:10.1111/1462-2920.16695
Yanhui Kong, Rui Zhang, Stéphane Blain, Ingrid Obernosterer
{"title":"南大洋浮游植物繁殖期间微生物痕量金属转运体的季节动态。","authors":"Yanhui Kong,&nbsp;Rui Zhang,&nbsp;Stéphane Blain,&nbsp;Ingrid Obernosterer","doi":"10.1111/1462-2920.16695","DOIUrl":null,"url":null,"abstract":"<p>Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that <i>Rhodobacteraceae</i> had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as <i>Flavobacteriaceae</i> (Zn), <i>Nitrincolaceae</i> (Ni and W) and <i>Thioglobaceae</i> (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16695","citationCount":"0","resultStr":"{\"title\":\"Seasonal dynamics in microbial trace metals transporters during phytoplankton blooms in the Southern Ocean\",\"authors\":\"Yanhui Kong,&nbsp;Rui Zhang,&nbsp;Stéphane Blain,&nbsp;Ingrid Obernosterer\",\"doi\":\"10.1111/1462-2920.16695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that <i>Rhodobacteraceae</i> had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as <i>Flavobacteriaceae</i> (Zn), <i>Nitrincolaceae</i> (Ni and W) and <i>Thioglobaceae</i> (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16695\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

痕量金属需要作为金属蛋白的辅助因子,而金属蛋白对微生物的新陈代谢和生长至关重要。微生物对各种金属的需求以及原核生物类群获取这些金属的能力仍然鲜为人知。我们在此介绍对凯尔盖朗岛(南大洋印度洋段)附近地区整个丰产季节的元基因组观测结果。我们观察到七种微量元素(锌、锰、镍、钼、钨、铜和钴)的原核转运体丰度的季节性模式,春季和夏季浮游植物的连续繁殖是这些时间趋势的主要驱动力。功能基因的分类学归属显示,罗氏菌科(Rhodobacteraceae)具有广泛的痕量金属转运体(Mn、Zn、Ni、W 和 Mo),而黄杆菌科(Flavobacteriaceae)(Zn)、硝化细菌科(Nitrincolaceae)(Ni 和 W)和硫球菌科(Thioglobaceae)(Mo)等其他原核生物群体的痕量金属转运体则较为有限。在具有代表性的元基因组组装基因组中,根据科级确定的原核生物类群中痕量金属转运体的普遍性得到了总体证实。我们讨论了原核生物群可能参与需要这些金属的有机物利用过程,以及对南大洋表层水碳和痕量金属循环的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seasonal dynamics in microbial trace metals transporters during phytoplankton blooms in the Southern Ocean

Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that Rhodobacteraceae had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as Flavobacteriaceae (Zn), Nitrincolaceae (Ni and W) and Thioglobaceae (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Succession of Bacteria and Archaea Within the Soil Micro-Food Web Shifts Soil Respiration Dynamics Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns Bee microbiomes in a changing climate: Investigating the effects of temperature on solitary bee life history and health Understanding the ecological versatility of Tetracladium species in temperate forest soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1