{"title":"TFTL:基于脑电图的跨主体和跨数据集运动想象 BCI 的无任务迁移学习策略。","authors":"Yihan Wang, Jiaxing Wang, Weiqun Wang, Jianqiang Su, Chayut Bunterngchit, Zeng-Guang Hou","doi":"10.1109/TBME.2024.3474049","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Motor imagery-based brain-computer interfaces (MI-BCIs) have been playing an increasingly vital role in neural rehabilitation. However, the long-term task-based calibration required for enhanced model performance leads to an unfriendly user experience, while the inadequacy of EEG data hinders the performance of deep learning models. To address these challenges, a task-free transfer learning strategy (TFTL) for EEG-based cross-subject & cross-dataset MI-BCI is proposed for calibration time reduction and multi-center data co-modeling.</p><p><strong>Methods: </strong>TFTL strategy consists of data alignment, shared feature extractor, and specific classifiers, in which the label predictor for MI tasks classification, as well as domain and dataset discriminator for inter-subject variability reduction are concurrently optimized for knowledge transfer from subjects across different datasets to the target subject. Moreover, only resting data of the target subject is used for subject-specific model construction to achieve task-free.</p><p><strong>Results: </strong>We employed three deep learning methods (ShallowConvNet, EEGNet, and TCNet-Fusion) as baseline approaches to evaluate the effectiveness of the proposed strategy on five datasets (BCIC IV Dataset 2a, Dataset 1, Physionet MI, Dreyer 2023, and OpenBMI). The results demonstrate a significant improvement with the inclusion of the TFTL strategy compared to the baseline methods, reaching a maximum enhancement of 15.67% with a statistical significance (p=2.4e-5<0.05). Moreover, task-free resulted in MI trials needed for calibration being 0 for all datasets, which significantly alleviated the calibration burden for patients before usage.</p><p><strong>Conclusion/significance: </strong>The proposed TFTL strategy effectively addresses challenges posed by prolonged calibration periods and insufficient EEG data, thus promoting MI-BCI from laboratory to clinical application.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TFTL: A Task-Free Transfer Learning Strategy for EEG-based Cross-Subject & Cross-Dataset Motor Imagery BCI.\",\"authors\":\"Yihan Wang, Jiaxing Wang, Weiqun Wang, Jianqiang Su, Chayut Bunterngchit, Zeng-Guang Hou\",\"doi\":\"10.1109/TBME.2024.3474049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Motor imagery-based brain-computer interfaces (MI-BCIs) have been playing an increasingly vital role in neural rehabilitation. However, the long-term task-based calibration required for enhanced model performance leads to an unfriendly user experience, while the inadequacy of EEG data hinders the performance of deep learning models. To address these challenges, a task-free transfer learning strategy (TFTL) for EEG-based cross-subject & cross-dataset MI-BCI is proposed for calibration time reduction and multi-center data co-modeling.</p><p><strong>Methods: </strong>TFTL strategy consists of data alignment, shared feature extractor, and specific classifiers, in which the label predictor for MI tasks classification, as well as domain and dataset discriminator for inter-subject variability reduction are concurrently optimized for knowledge transfer from subjects across different datasets to the target subject. Moreover, only resting data of the target subject is used for subject-specific model construction to achieve task-free.</p><p><strong>Results: </strong>We employed three deep learning methods (ShallowConvNet, EEGNet, and TCNet-Fusion) as baseline approaches to evaluate the effectiveness of the proposed strategy on five datasets (BCIC IV Dataset 2a, Dataset 1, Physionet MI, Dreyer 2023, and OpenBMI). The results demonstrate a significant improvement with the inclusion of the TFTL strategy compared to the baseline methods, reaching a maximum enhancement of 15.67% with a statistical significance (p=2.4e-5<0.05). Moreover, task-free resulted in MI trials needed for calibration being 0 for all datasets, which significantly alleviated the calibration burden for patients before usage.</p><p><strong>Conclusion/significance: </strong>The proposed TFTL strategy effectively addresses challenges posed by prolonged calibration periods and insufficient EEG data, thus promoting MI-BCI from laboratory to clinical application.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2024.3474049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3474049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
TFTL: A Task-Free Transfer Learning Strategy for EEG-based Cross-Subject & Cross-Dataset Motor Imagery BCI.
Objective: Motor imagery-based brain-computer interfaces (MI-BCIs) have been playing an increasingly vital role in neural rehabilitation. However, the long-term task-based calibration required for enhanced model performance leads to an unfriendly user experience, while the inadequacy of EEG data hinders the performance of deep learning models. To address these challenges, a task-free transfer learning strategy (TFTL) for EEG-based cross-subject & cross-dataset MI-BCI is proposed for calibration time reduction and multi-center data co-modeling.
Methods: TFTL strategy consists of data alignment, shared feature extractor, and specific classifiers, in which the label predictor for MI tasks classification, as well as domain and dataset discriminator for inter-subject variability reduction are concurrently optimized for knowledge transfer from subjects across different datasets to the target subject. Moreover, only resting data of the target subject is used for subject-specific model construction to achieve task-free.
Results: We employed three deep learning methods (ShallowConvNet, EEGNet, and TCNet-Fusion) as baseline approaches to evaluate the effectiveness of the proposed strategy on five datasets (BCIC IV Dataset 2a, Dataset 1, Physionet MI, Dreyer 2023, and OpenBMI). The results demonstrate a significant improvement with the inclusion of the TFTL strategy compared to the baseline methods, reaching a maximum enhancement of 15.67% with a statistical significance (p=2.4e-5<0.05). Moreover, task-free resulted in MI trials needed for calibration being 0 for all datasets, which significantly alleviated the calibration burden for patients before usage.
Conclusion/significance: The proposed TFTL strategy effectively addresses challenges posed by prolonged calibration periods and insufficient EEG data, thus promoting MI-BCI from laboratory to clinical application.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.