纳米载体添加剂对大鼠皮肤生物力学反应的影响

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2024-10-04 DOI:10.1109/TNB.2024.3471588
Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi
{"title":"纳米载体添加剂对大鼠皮肤生物力学反应的影响","authors":"Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi","doi":"10.1109/TNB.2024.3471588","DOIUrl":null,"url":null,"abstract":"<p><p>Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nanocarrier additives on biomechanical response of a rat skin.\",\"authors\":\"Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi\",\"doi\":\"10.1109/TNB.2024.3471588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.</p>\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1109/TNB.2024.3471588\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2024.3471588","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

皮肤健康监测的重点是通过评估皮肤的机械特性来识别疾病。这些特性可能会随着时间的推移而退化,从而改变皮肤的自然频率以及与这些频率相关的模态形式。探索皮肤的机械特性可以增强我们对皮肤动态的了解,从而改进临床试验和诊断。在这项工作中,我们使用基于激光的非侵入式光学传感器实验测量了皮肤的动态特性。我们通过分析皮肤的共振频率和模态形状,测量了皮肤随时间变化的机械特性。我们局部涂抹了纳米载体凝胶和酮康唑乳膏,以保持皮肤水分,促进添加剂在皮肤中的深层渗透。基于时间的研究用于评估不同配方对皮肤弹性的影响。弹性模量的实验结果与有限元分析(FEA)模拟得出的结果进行了比较。我们观察到,与正常皮肤相比,膏霜和凝胶处理皮肤的频率分别降低了 29.98% 和 44.029%(频率:263.3 ± 1.18 Hz,弹性模量:7.56 ± 2.60 MPa)。与正常皮肤相比,经过乳霜和纳米载体凝胶处理的皮肤刚度(频率函数)下降,这归因于含水量的增加。实验结果和数值结果是一致的。这种基于光学传感器的方法可用于研究病变皮肤力学及其对凝胶和乳霜治疗的反应,从而降低皮肤病的发病率和严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of nanocarrier additives on biomechanical response of a rat skin.

Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1