Olivier Niel, Ancuta Caliment, Charlotte Hougardy, Olivier Monestier, Karin Dahan
{"title":"K乙酰转移酶2B(KAT2B)变体可能是早发性类固醇抵抗性肾病综合征的罪魁祸首。","authors":"Olivier Niel, Ancuta Caliment, Charlotte Hougardy, Olivier Monestier, Karin Dahan","doi":"10.1136/jmg-2024-110142","DOIUrl":null,"url":null,"abstract":"<p><p>In children, 15% of nephrotic syndromes are steroid-resistant (SRNS); approximately 30% of early onset SRNS have a genetic origin, with more than 100 causal genes described so far. SRNS can be syndromic, if associated with signs and symptoms affecting other organs or systems, such as the central nervous system, the heart or the eyes. Patients with SRNS are at high risk of chronic kidney disease and progressive renal failure, and as such need multidisciplinary care, centred on renal protection. Recently, K acetyltransferase 2B (<i>KAT2B</i>) loss of function was identified as a risk factor for morphological and functional defects in Drosophila nephrocytes; in vitro knockdown of <i>KAT2B</i> also impaired the adhesion and migration ability of human podocytes.Here we provide the first clinical description of a family affected by a loss of function mutation of <i>KAT2B</i> Clinically, both siblings presented with early onset SRNS and bilateral cataract, without neurological or heart defects. Renal function was maintained in the teenage years; nephrotic-range proteinuria was insensitive to immunosuppressive therapies. Therefore, mutations of <i>KAT2B</i> should be sought in patients with unexplained syndromic SRNS affecting the eye.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"1113-1115"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K acetyltransferase 2B (<i>KAT2B</i>) variants can be responsible for early onset steroid-resistant nephrotic syndrome.\",\"authors\":\"Olivier Niel, Ancuta Caliment, Charlotte Hougardy, Olivier Monestier, Karin Dahan\",\"doi\":\"10.1136/jmg-2024-110142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In children, 15% of nephrotic syndromes are steroid-resistant (SRNS); approximately 30% of early onset SRNS have a genetic origin, with more than 100 causal genes described so far. SRNS can be syndromic, if associated with signs and symptoms affecting other organs or systems, such as the central nervous system, the heart or the eyes. Patients with SRNS are at high risk of chronic kidney disease and progressive renal failure, and as such need multidisciplinary care, centred on renal protection. Recently, K acetyltransferase 2B (<i>KAT2B</i>) loss of function was identified as a risk factor for morphological and functional defects in Drosophila nephrocytes; in vitro knockdown of <i>KAT2B</i> also impaired the adhesion and migration ability of human podocytes.Here we provide the first clinical description of a family affected by a loss of function mutation of <i>KAT2B</i> Clinically, both siblings presented with early onset SRNS and bilateral cataract, without neurological or heart defects. Renal function was maintained in the teenage years; nephrotic-range proteinuria was insensitive to immunosuppressive therapies. Therefore, mutations of <i>KAT2B</i> should be sought in patients with unexplained syndromic SRNS affecting the eye.</p>\",\"PeriodicalId\":16237,\"journal\":{\"name\":\"Journal of Medical Genetics\",\"volume\":\" \",\"pages\":\"1113-1115\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jmg-2024-110142\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2024-110142","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
K acetyltransferase 2B (KAT2B) variants can be responsible for early onset steroid-resistant nephrotic syndrome.
In children, 15% of nephrotic syndromes are steroid-resistant (SRNS); approximately 30% of early onset SRNS have a genetic origin, with more than 100 causal genes described so far. SRNS can be syndromic, if associated with signs and symptoms affecting other organs or systems, such as the central nervous system, the heart or the eyes. Patients with SRNS are at high risk of chronic kidney disease and progressive renal failure, and as such need multidisciplinary care, centred on renal protection. Recently, K acetyltransferase 2B (KAT2B) loss of function was identified as a risk factor for morphological and functional defects in Drosophila nephrocytes; in vitro knockdown of KAT2B also impaired the adhesion and migration ability of human podocytes.Here we provide the first clinical description of a family affected by a loss of function mutation of KAT2B Clinically, both siblings presented with early onset SRNS and bilateral cataract, without neurological or heart defects. Renal function was maintained in the teenage years; nephrotic-range proteinuria was insensitive to immunosuppressive therapies. Therefore, mutations of KAT2B should be sought in patients with unexplained syndromic SRNS affecting the eye.
期刊介绍:
Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.