{"title":"通过多草药配方生物合成 AgNPs:对来自 Bungarus sindanus 毒液的乙酰胆碱酯酶的机理中和及毒理学影响。","authors":"Noshaba Afshin, Nadia Mushtaq, Mushtaq Ahmed, Naila Sher, Sadeq K Alhag, Fatma Mohamed Ameen Khalil, Laila A Al-Shuraym, Hajra Hameed, Farhad Badshah, Riaz Hussain","doi":"10.1002/jemt.24701","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom.\",\"authors\":\"Noshaba Afshin, Nadia Mushtaq, Mushtaq Ahmed, Naila Sher, Sadeq K Alhag, Fatma Mohamed Ameen Khalil, Laila A Al-Shuraym, Hajra Hameed, Farhad Badshah, Riaz Hussain\",\"doi\":\"10.1002/jemt.24701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom.
This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.