山羊泛基因组揭示了驯化过程中基因丢失的模式。

IF 6.3 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Animal Science and Biotechnology Pub Date : 2024-10-05 DOI:10.1186/s40104-024-01092-7
Jiaxin Liu, Yilong Shi, Dongxin Mo, Lingyun Luo, Songsong Xu, Fenghua Lv
{"title":"山羊泛基因组揭示了驯化过程中基因丢失的模式。","authors":"Jiaxin Liu, Yilong Shi, Dongxin Mo, Lingyun Luo, Songsong Xu, Fenghua Lv","doi":"10.1186/s40104-024-01092-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species.</p><p><strong>Results: </strong>We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement.</p><p><strong>Conclusions: </strong>Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"132"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453020/pdf/","citationCount":"0","resultStr":"{\"title\":\"The goat pan-genome reveals patterns of gene loss during domestication.\",\"authors\":\"Jiaxin Liu, Yilong Shi, Dongxin Mo, Lingyun Luo, Songsong Xu, Fenghua Lv\",\"doi\":\"10.1186/s40104-024-01092-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species.</p><p><strong>Results: </strong>We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement.</p><p><strong>Conclusions: </strong>Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"15 1\",\"pages\":\"132\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-024-01092-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-024-01092-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:揭示遗传多样性特征和了解不同山羊表型的遗传机制对于促进这些遗传资源的保护和利用至关重要。然而,单个个体的参考基因组无法捕捉物种内的全部遗传多样性。泛基因组是一个物种中所有 DNA 序列的集合,它有望捕捉特定物种的总基因组多样性:我们基于 813 个个体(包括 723 个家养山羊和 90 个野生近缘种山羊样本),利用图谱-图谱组装技术构建了山羊泛基因组,呈现出广泛的区域和全球代表性。在参考基因组(ARS1.2;GCF_001704415.2)中总共发现了 146 Mb 序列和 974 个缺失基因。通过泛基因组分析,我们发现了 3190 个新的单核苷酸多态性(SNPs)。这些新的 SNPs 可以正确揭示家山羊及其野生近缘种的种群结构。存在/不存在变异(PAV)分析揭示了驯化和改良过程中的基因丢失和强烈的负选择:我们的研究强调了山羊泛基因组在捕捉缺失基因变异方面的重要性。它揭示了山羊驯化和改良过程中基因组结构的变化,如基因丢失。这加深了我们对山羊进化和育种历史的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The goat pan-genome reveals patterns of gene loss during domestication.

Background: Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species.

Results: We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement.

Conclusions: Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
822
期刊最新文献
Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. Natural plant polyphenols contribute to the ecological and healthy swine production. Embryotrophic effect of exogenous protein contained adipose-derived stem cell extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1