IDM-Net:用于磁场逆向设计的多任务支持编码器-解码器框架

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-09-20 DOI:10.1109/TASC.2024.3465378
Jiaqi Wang;Qiankun Zhang
{"title":"IDM-Net:用于磁场逆向设计的多任务支持编码器-解码器框架","authors":"Jiaqi Wang;Qiankun Zhang","doi":"10.1109/TASC.2024.3465378","DOIUrl":null,"url":null,"abstract":"We propose an end-to-end framework for inversely designing permanent magnets named IDM-Net. It utilizes a fundamental encoder-decoder architecture to handle multiple tasks. In more detail, the encoder is responsible for deeply extracting features of the magnetic field and categorizing different types of magnet shapes. The decoder focuses on inferring significant properties of each specific type of magnet shape, including size, position, and magnetization intensity. Such architecture breaks the critical limitation of designing only a single type of magnet in literature. Further, it allows for flexible choices of encoders' networks, such as convolutional neural networks (CNNs) or transformers, which are widely used in various computer vision tasks. Our experimental results demonstrate that the ResNet50-based and ViT-B/16-based IDM-Nets achieve accuracies of 93.8% and 91.4% in magnet shapes classification and errors of 0.31% and 0.33% in predicting magnetic properties, respectively.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDM-Net: A Multi-Task Supported Encoder-Decoder Framework for Magnetic Field Inverse Design\",\"authors\":\"Jiaqi Wang;Qiankun Zhang\",\"doi\":\"10.1109/TASC.2024.3465378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an end-to-end framework for inversely designing permanent magnets named IDM-Net. It utilizes a fundamental encoder-decoder architecture to handle multiple tasks. In more detail, the encoder is responsible for deeply extracting features of the magnetic field and categorizing different types of magnet shapes. The decoder focuses on inferring significant properties of each specific type of magnet shape, including size, position, and magnetization intensity. Such architecture breaks the critical limitation of designing only a single type of magnet in literature. Further, it allows for flexible choices of encoders' networks, such as convolutional neural networks (CNNs) or transformers, which are widely used in various computer vision tasks. Our experimental results demonstrate that the ResNet50-based and ViT-B/16-based IDM-Nets achieve accuracies of 93.8% and 91.4% in magnet shapes classification and errors of 0.31% and 0.33% in predicting magnetic properties, respectively.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 8\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684595/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10684595/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于反向设计永磁体的端到端框架,名为 IDM-Net。它利用基本的编码器-解码器架构来处理多项任务。更详细地说,编码器负责深度提取磁场特征,并对不同类型的磁体形状进行分类。解码器侧重于推断每种特定类型磁体形状的重要属性,包括大小、位置和磁化强度。这种结构打破了文献中只设计单一类型磁体的关键限制。此外,它还允许灵活选择编码器网络,如卷积神经网络(CNN)或变压器,这些网络被广泛应用于各种计算机视觉任务中。我们的实验结果表明,基于 ResNet50 和基于 ViT-B/16 的 IDM 网络在磁体形状分类方面的准确率分别为 93.8% 和 91.4%,在预测磁性能方面的误差分别为 0.31% 和 0.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IDM-Net: A Multi-Task Supported Encoder-Decoder Framework for Magnetic Field Inverse Design
We propose an end-to-end framework for inversely designing permanent magnets named IDM-Net. It utilizes a fundamental encoder-decoder architecture to handle multiple tasks. In more detail, the encoder is responsible for deeply extracting features of the magnetic field and categorizing different types of magnet shapes. The decoder focuses on inferring significant properties of each specific type of magnet shape, including size, position, and magnetization intensity. Such architecture breaks the critical limitation of designing only a single type of magnet in literature. Further, it allows for flexible choices of encoders' networks, such as convolutional neural networks (CNNs) or transformers, which are widely used in various computer vision tasks. Our experimental results demonstrate that the ResNet50-based and ViT-B/16-based IDM-Nets achieve accuracies of 93.8% and 91.4% in magnet shapes classification and errors of 0.31% and 0.33% in predicting magnetic properties, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
ASEMD2023 – Introduction A Broadband Mechanically Tuned Superconducting Cavity Design Suitable for the Fermilab Main Injector A High-Temperature Superconducting Triplexer Based on Co-Coupling of Multimode Resonators A Drag-Torque Method for Measuring AC Losses in Superconducting Samples 4-Bit Factorization Circuit Composed of Multiplier Units With Superconducting Flux Qubits Toward Quantum Annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1