{"title":"用于高维双目标特征选择的双搜索进化算法","authors":"Hang Xu;Bing Xue;Mengjie Zhang","doi":"10.1109/TETCI.2024.3393388","DOIUrl":null,"url":null,"abstract":"High dimensionality often challenges the efficiency and accuracy of a classifier, while evolutionary feature selection is an effective method for data preprocessing and dimensionality reduction. However, with the exponential expansion of search space along with the increase of features, traditional evolutionary feature selection methods could still find it difficult to search for optimal or near optimal solutions in the large-scale search space. To overcome the above issue, in this paper, we propose a bi-search evolutionary algorithm (termed BSEA) for tackling high-dimensional feature selection in classification, with two contradictory optimizing objectives (i.e., minimizing both selected features and classification errors). In BSEA, a bi-search evolutionary mode combining the forward and backward searching tasks is adopted to enhance the search ability in the large-scale search space; in addition, an adaptive feature analysis mechanism is also designed to the explore promising features for efficiently reproducing more diverse offspring. In the experiments, BSEA is comprehensively compared with 9 most recent or classic state-of-the-art MOEAs on a series of 11 high-dimensional datasets with no less than 2000 features. The empirical results suggest that BSEA generally performs the best on most of the datasets in terms of all performance metrics, along with high computational efficiency, while each of its essential components can take positive effect on boosting the search ability and together make the best contribution.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3489-3502"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Search Evolutionary Algorithm for High-Dimensional Bi-Objective Feature Selection\",\"authors\":\"Hang Xu;Bing Xue;Mengjie Zhang\",\"doi\":\"10.1109/TETCI.2024.3393388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dimensionality often challenges the efficiency and accuracy of a classifier, while evolutionary feature selection is an effective method for data preprocessing and dimensionality reduction. However, with the exponential expansion of search space along with the increase of features, traditional evolutionary feature selection methods could still find it difficult to search for optimal or near optimal solutions in the large-scale search space. To overcome the above issue, in this paper, we propose a bi-search evolutionary algorithm (termed BSEA) for tackling high-dimensional feature selection in classification, with two contradictory optimizing objectives (i.e., minimizing both selected features and classification errors). In BSEA, a bi-search evolutionary mode combining the forward and backward searching tasks is adopted to enhance the search ability in the large-scale search space; in addition, an adaptive feature analysis mechanism is also designed to the explore promising features for efficiently reproducing more diverse offspring. In the experiments, BSEA is comprehensively compared with 9 most recent or classic state-of-the-art MOEAs on a series of 11 high-dimensional datasets with no less than 2000 features. The empirical results suggest that BSEA generally performs the best on most of the datasets in terms of all performance metrics, along with high computational efficiency, while each of its essential components can take positive effect on boosting the search ability and together make the best contribution.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3489-3502\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510502/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10510502/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Bi-Search Evolutionary Algorithm for High-Dimensional Bi-Objective Feature Selection
High dimensionality often challenges the efficiency and accuracy of a classifier, while evolutionary feature selection is an effective method for data preprocessing and dimensionality reduction. However, with the exponential expansion of search space along with the increase of features, traditional evolutionary feature selection methods could still find it difficult to search for optimal or near optimal solutions in the large-scale search space. To overcome the above issue, in this paper, we propose a bi-search evolutionary algorithm (termed BSEA) for tackling high-dimensional feature selection in classification, with two contradictory optimizing objectives (i.e., minimizing both selected features and classification errors). In BSEA, a bi-search evolutionary mode combining the forward and backward searching tasks is adopted to enhance the search ability in the large-scale search space; in addition, an adaptive feature analysis mechanism is also designed to the explore promising features for efficiently reproducing more diverse offspring. In the experiments, BSEA is comprehensively compared with 9 most recent or classic state-of-the-art MOEAs on a series of 11 high-dimensional datasets with no less than 2000 features. The empirical results suggest that BSEA generally performs the best on most of the datasets in terms of all performance metrics, along with high computational efficiency, while each of its essential components can take positive effect on boosting the search ability and together make the best contribution.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.